gic	Outline
Complexity Theory Georg Moser Institute of Computer Science @ UIBK Summer 2008	 Summary of Last Lecture: The Polynomial-Time Hierarchy Exercises Nick's Class Relation to Time-Space Classes
	GM (Institute of Computer Science @ UIBK) Complexity Theory 8/14
Summary of Last Lecture Theorem consider $NP \subseteq NP^{NP} \subseteq NP^{NP^{NP}} \dots$ i.e., $NP_1 := NP$ and $NP_{k+1} := NP^{NP_k}$, then $\forall k \ge 1$: $NP_k = \Sigma_k^p$	Summary of Last LectureDefinition• a set A is recursive enumerable in B if $A = L(M^B)$ for some oracle TM M^B • A is recursive in B if $A = L(M^B)$ and M^B is a total oracle TM• $A \leq_T B$, if A recursive in B• $A \leq_T B$, if A recursive in B• $A \leq_m B$, if A many-one reduces to B
Theorem a language A is in Σ_k^p iff there is a deterministic polytime computable (k + 1)-ary predicate R and a constant c such that $A = \{x \mid \exists^{ x ^c} y_1 \forall^{ x ^c} y_2 \exists^{ x ^c} y_3 \dots Q^{ x ^c} y_k R(x, y_1, \dots, y_k) $ $(Q \in \{\exists, \forall\})$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
GM (Institute of Computer Science @ UIBK) Complexity Theory 9/14	GM (Institute of Computer Science @ UIBK) Complexity Theory 10/14

mmary of Last Lecture	Homework
Theorem	Homework
• a set ${\mathcal A}$ is in Σ^0_n iff \exists a decidable $(n+1)$ -ary predicate R such that	
$\mathbf{A} = \{x \mid \exists y_1 \forall y_2 \dots Q y_n R(x, y_1, \dots, y_n)\}$	
$(Q \in \{\exists,\forall\})$	1 Miscellaneous Exercises 27
• a set ${\mathcal A}$ is in Π^0_n iff \exists a decidable $(n+1)$ -ary predicate R such that	
$\boldsymbol{A} = \{ \boldsymbol{x} \mid \forall \boldsymbol{y}_1 \exists \boldsymbol{y}_2 \dots \boldsymbol{Q} \boldsymbol{y}_n \boldsymbol{R}(\boldsymbol{x}, \boldsymbol{y}_1, \dots, \boldsymbol{y}_n) \}$	2 Miscellaneous Exercises 32
$(Q\in\{\exists,\forall\})$	3 Miscellaneous Exercises 34
	4 Miscellaneous Exercises 35
Example	5 Miscellaneous Exercises 128
• HP is \leq_m -complete for Σ_1^0	
• MP is \leqslant_m -complete for Σ_1^0	
• $FIN = \{M \mid \operatorname{L}(M) ext{ is finite}\}$ is \leqslant_m -complete for Σ_2^0	
// (Institute of Computer Science @ UIBK) Complexity Theory 11/14 ck's Class	GM (Institute of Computer Science @ UIBK) Complexity Theory 1 Relation to Time-Space Classes
Definition	Definition ST
a family of Boolean circuits C_0, C_1, C_2, \ldots is a logspace-uniform family of	the class $STA(S(n), T(n), A(n))$ is the class of sets accepted by ATMs the
Boolean circuits of polylog depth and polynomial size if	 are S(n)-space bounded, T(n)-time bounded, and
1 C_n has <i>n</i> inputs and is composed of \land , \lor and \neg -gates	3 consist of at most $A(n)$ alternating sections
2 C_n is of depth at most $(\log n)^{O(1)}$	
depth is the length of the longest path from input to output $Q(1)$	Example $LOGSPACE = STA(\log n, *, 0)$
3 C_n has no more than $n^{O(1)}$ gates	$NLOGSPACE = STA(\log n, *, \Sigma 1)$
4 the $(C_i)_{i \in \mathbb{N}}$ is logspace-uniform: \exists a logspace transducer that produces the circuits C_n on input 0^n	$P = STA(\log n, *, *) = STA(*, n^{O(1)}, 0)$
\square a logspace transducer that produces the circuits C_n on input of	$1 = 31 A(\log n, *, *) = 31 A(*, n + *, 0)$
	$NP = STA(\log n, *, *) = STA(*, n \to *, 0)$ $NP = STA(*, n^{O(1)}, \Sigma 1)$
Definition NC	
a set $A\subseteq \{0,1\}^*$ is in NC if \exists a logspace-uniform family of Boolean	$NP=STA(*,n^{O(1)},\Sigma 1)$
a set $A \subseteq \{0,1\}^*$ is in NC if \exists a logspace-uniform family of Boolean circuits of polylog depth and polynomial size, where each C_n has one	$NP = STA(*, n^{O(1)}, \Sigma 1)$ $\Sigma_k^p = STA(*, n^{O(1)}, \Sigma k)$
a set $A \subseteq \{0,1\}^*$ is in NC if \exists a logspace-uniform family of Boolean circuits of polylog depth and polynomial size, where each C_n has one output and $\forall x \in \{0,1\}^*$	$NP = STA(*, n^{O(1)}, \Sigma 1)$ $\Sigma_{k}^{p} = STA(*, n^{O(1)}, \Sigma k)$ $\Pi_{k}^{p} = STA(*, n^{O(1)}, \Pi k)$ $PSPACE = STA(*, n^{O(1)}, *) = STA(n^{O(1)}, *, 0)$ Theorem
a set $A \subseteq \{0,1\}^*$ is in NC if \exists a logspace-uniform family of Boolean circuits of polylog depth and polynomial size, where each C_n has one output and $\forall x \in \{0,1\}^*$ $x \in A \Leftrightarrow C_{ x }(x) = 1$	$NP = STA(*, n^{O(1)}, \Sigma 1)$ $\Sigma_{k}^{p} = STA(*, n^{O(1)}, \Sigma k)$ $\Pi_{k}^{p} = STA(*, n^{O(1)}, \Pi k)$ PSPACE = STA(*, n^{O(1)}, *) = STA(n^{O(1)}, *, 0)