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Summary of Last Lecture

Theorem
consider

NP ⊆ NPNP ⊆ NPNPNP

. . .

i.e., NP1 := NP and NPk+1 := NPNPk , then ∀k > 1: NPk = Σp
k

Theorem
a language A is in Σp

k iff there is a deterministic polytime computable
(k + 1)-ary predicate R and a constant c such that

A = {x | ∃|x |c y1∀|x |
c
y2∃|x |

c
y3 . . .Q|x |c ykR(x , y1, . . . , yk)

(Q ∈ {∃,∀})
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Summary of Last Lecture

Definition
• a set A is recursive enumerable in B if A = L(MB)

for some oracle TM MB

• A is recursive in B if A = L(MB) and MB is a total oracle TM

• A6TB, if A recursive in B Turing reducibility

• A6mB, if A many-one reduces to B many-one reducibility

Definition Arithmetical Hierarchy
we fix a binary alphabet Σ = {0, 1}

Σ0
1 := {r.e. sets} Σ0

n+1 := {L(MB) | B ∈ Σ0
n}

∆0
1 := {recursive sets} ∆0

n+1 := {L(MB) | B ∈ Σ0
n,M

B total}
Π0

n := {∼L | L ∈ Σ0
n}
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Summary of Last Lecture

Theorem

• a set A is in Σ0
n iff ∃ a decidable (n + 1)-ary predicate R such that

A = {x | ∃y1∀y2 . . .QynR(x , y1, . . . , yn)

(Q ∈ {∃,∀})
• a set A is in Π0

n iff ∃ a decidable (n + 1)-ary predicate R such that

A = {x | ∀y1∃y2 . . .QynR(x , y1, . . . , yn)

(Q ∈ {∃,∀})

Example
• HP is 6m-complete for Σ0

1

• MP is 6m-complete for Σ0
1

• FIN = {M | L(M) is finite} is 6m-complete for Σ0
2
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Homework

Homework

1 Miscellaneous Exercises 27

2 Miscellaneous Exercises 32

3 Miscellaneous Exercises 34

4 Miscellaneous Exercises 35

5 Miscellaneous Exercises 128
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Nick’s Class

Definition
a family of Boolean circuits C0,C1,C2, . . . is a logspace-uniform family of
Boolean circuits of polylog depth and polynomial size if

1 Cn has n inputs and is composed of ∧, ∨ and ¬-gates

2 Cn is of depth at most (log n)O(1)

depth is the length of the longest path from input to output

3 Cn has no more than nO(1) gates

4 the (Ci )i∈N is logspace-uniform:
∃ a logspace transducer that produces the circuits Cn on input 0n

Definition NC
a set A ⊆ {0, 1}∗ is in NC if ∃ a logspace-uniform family of Boolean
circuits of polylog depth and polynomial size, where each Cn has one
output and ∀ x ∈ {0, 1}∗

x ∈ A ⇔ C|x |(x) = 1
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Relation to Time-Space Classes

Definition STA
the class STA(S(n),T (n),A(n)) is the class of sets accepted by ATMs that

1 are S(n)-space bounded,

2 T (n)-time bounded, and

3 consist of at most A(n) alternating sections

Example
LOGSPACE = STA(log n, ∗, 0)

NLOGSPACE = STA(log n, ∗,Σ1)

P = STA(log n, ∗, ∗) = STA(∗, nO(1), 0)

NP = STA(∗, nO(1),Σ1)

Σp
k = STA(∗, nO(1),Σk)

Πp
k = STA(∗, nO(1),Πk)

PSPACE = STA(∗, nO(1), ∗) = STA(nO(1), ∗, 0)

Theorem
NC = STA(log n, ∗, (log n)O(1))
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