

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

Outline

- Summary of Last Lecture: Parallel Complexity
- Exercises
- Relation to Time-Space Classes (Proof)

Summary of Last Lecture

Definition

a family of Boolean circuits C_0, C_1, C_2, \ldots is a logspace-uniform family of Boolean circuits of polylog depth and polynomial size if

- **1** C_n has *n* inputs and is composed of \land , \lor and \neg -gates
- 2 C_n is of depth at most $(\log n)^{O(1)}$

depth is the length of the longest path from input to output

- 3 C_n has no more than $n^{O(1)}$ gates
- the (C_i)_{i∈ℕ} is logspace-uniform:
 ∃ a logspace transducer that produces the circuits C_n on input 0ⁿ

Definition

a set $A \subseteq \{0,1\}^*$ is in NC if \exists a logspace-uniform family of Boolean circuits of polylog depth and polynomial size, where each C_n has one output and $\forall x \in \{0,1\}^*$

Complexity Theory

$$x \in A \Leftrightarrow C_{|x|}(x) = 1$$

GM (Institute of Computer Science @ UIBK) Summary of Last Lecture

Definition

the class STA(S(n), T(n), A(n)) is the class of sets accepted by ATMs that

- **1** are S(n)-space bounded,
- **2** T(n)-time bounded, and
- **3** consist of at most A(n) alternating sections

Theorem NC = STA(log $n, *, (\log n)^{O(1)}$)

NC

9/15

STA

Homework

Homework 4.1.

- 2 Homework 4.2.
- **B** Homework 5.3.
- 4 Miscellaneous Exercises 29.
- 5 Miscellaneous Exercises 31.

GM (Institute of Computer Science @ UIBK) Complexity Theory

```
Theorem
\mathsf{NC} = \mathsf{STA}(\log n, *, (\log n)^{\mathsf{O}(1)})
```

Definition

logspace-uniform means \exists a logspace transducer M that produces the circuits C_n on input 0^n

more precisely

- **1** M enumerates all names of the gates in C_n
- **2** \forall gates c in C_n indicates type of c
- **3** defines connections between gates
- 4 indicates for one gate that it is an output gate

11/15

$\mathsf{NC} \subseteq \mathsf{STA}(\log n, *, (\log n)^{\mathsf{O}(1)})$

- \exists a logspace-uniform family of Boolean circuits C_n of polylog depth and polynomial size
- ∃ logspace-uniform transducer M
- construct ATM N that simulates the family C_n:
 on input x (|x| = n), N runs M to produce C_n and evaluate C_n(x):
 - **1** first N finds the output gate and writes in on its tape
 - **2** in the following assume d and type of d are written on the tape
 - 3 if d is ∧ or ∨ find two input to these gates then branch accordingly
 - 4 if d is input, accept if d = 1 and reject if d = 0
 - 5 if d is ¬-gate, find the unique input gate that inputs to d, accept/reject accordingly

GM (Institute of Computer Science @ UIBK) Relation to Time-Space Classes Complexity Theory

 $\mathsf{STA}(\log n, *, (\log n)^{\mathsf{O}(1)}) \subseteq \mathsf{NC}$

- ∃ alternating logspace machine N, making at most (log n)^c alternations on input x (|x| = n)
- represent the next-configuration relation as $n^c \times n^c$ Boolean matrix R_x
- construction of the circuit C_n
 - **1** compute entries of R_x , depth of R_x is 1
 - 2 construct matrices:

 $S_{x} = \{(\alpha, \beta) \mid R_{x}(\alpha, \beta) = 1 \text{ and } type(\alpha) = type(\beta)\}$ $T_{x} = \{(\alpha, \beta) \mid R_{x}(\alpha, \beta) = 1 \text{ and } type(\alpha) \neq type(\beta)\}$ $S_{x}^{*} = \text{reflexive, transitive closure of } S_{x}$

- 3 an existential configuration $\alpha @ i + 1$ is accepting iff \exists (universal) $\beta @ i$ with $S_x^* T_x(\alpha, \beta) = 1$, β is accepting
- **4** a universal configuration $\alpha \otimes i + 1$ is accepting iff \forall (existential) $\beta \otimes i$ with $S_x^* T_x(\alpha, \beta) = 1$, β is accepting

13/15

$STA(\log n, *, (\log n)^{O(1)}) \subseteq NC \text{ (cont'd)}$

represent as circuit calculations via Boolean vectors b_i of length n^c such that b_i(α) = 1, if α @ i accepts, and:

$$b_{i+1} := S_x^* T_x b_i \qquad \wedge \qquad b_{i+1} := \neg (S_x^* T_x (\neg b_i))$$

• initially b_0 is zero

 \bigvee

• output $b_{(\log n)^c}(\text{start})$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

15/15