gic	Outline
Complexity Theory Georg Moser Institute of Computer Science @ UIBK	 Summary of Last Lecture: Parallel Complexity Exercises Relation to Time-Space Classes (Proof)
Summer 2000	GM (Institute of Computer Science @ UIBK) Complexity Theory 8/15 Summary of Last Lecture
 Definition a family of Boolean circuits C₀, C₁, C₂, is a logspace-uniform family of Boolean circuits of polylog depth and polynomial size if C_n has n inputs and is composed of ∧, ∨ and ¬-gates C_n is of depth at most (log n)^{O(1)} depth is the length of the longest path from input to output C_n has no more than n^{O(1)} gates the (C_i)_{i∈N} is logspace-uniform: a logspace transducer that produces the circuits C_n on input 0ⁿ 	Definition STA the class $STA(S(n), T(n), A(n))$ is the class of sets accepted by ATMs that 1 are $S(n)$ -space bounded, 2 $T(n)$ -time bounded, and 3 consist of at most $A(n)$ alternating sections
Definition a set $A \subseteq \{0,1\}^*$ is in NC if \exists a logspace-uniform family of Boolean circuits of polylog depth and polynomial size, where each C_n has one output and $\forall x \in \{0,1\}^*$	Theorem NC = STA($\log n, *, (\log n)^{O(1)}$)

Complexity Theory

Homework	Relation to Time-Space Classes
Homework	Theorem NC = STA(log $n, *, (\log n)^{O(1)}$)
 Homework 4.1. Homework 4.2. Homework 5.3. Miscellaneous Exercises 29. Miscellaneous Exercises 31. 	Definition logspace-uniform means \exists a logspace transducer M that produces the circuits C_n on input 0^n more precisely 1 M enumerates all names of the gates in C_n 2 \forall gates c in C_n indicates type of c 3 defines connections between gates 4 indicates for one gate that it is an output gate
GM (Institute of Computer Science @ UIBK) Complexity Theory 11/15	GM (Institute of Computer Science @ UIBK) Complexity Theory 12/15
 NC ⊆ STA(log n, *, (log n)^{O(1)}) ∃ a logspace-uniform family of Boolean circuits C_n of polylog depth and polynomial size ∃ logspace-uniform transducer M construct ATM N that simulates the family C_n: on input x (x = n), N runs M to produce C_n and evaluate C_n(x): i first N finds the output gate and writes in on its tape in the following assume d and type of d are written on the tape if d is ∧ or ∨ find two input to these gates then branch accordingly if d is input, accept if d = 1 and reject if d = 0 if d is ¬-gate, find the unique input gate that inputs to d, accept/reject accordingly 	 STA(log n, *, (log n)^{O(1)}) ⊆ NC ∃ alternating logspace machine N, making at most (log n)^c alternations on input x (x = n) represent the next-configuration relation as n^c × n^c Boolean matrix R_x construction of the circuit C_n compute entries of R_x, depth of R_x is 1 construct matrices: S_x = {(α, β) R_x(α, β) = 1 and type(α) = type(β)} T_x = {(α, β) R_x(α, β) = 1 and type(α) ≠ type(β)} S_x[*] = reflexive, transitive closure of S_x an existential configuration α @ i + 1 is accepting iff ∃ (universal) β @ i with S_x[*] T_x(α, β) = 1, β is accepting a universal configuration α @ i + 1 is accepting iff ∀ (existential) β @ i with S_x[*] T_x(α, β) = 1, β is accepting

Complexity Theory

 $STA(\log n, *, (\log n)^{O(1)}) \subseteq NC \text{ (cont'd)}$

• represent as circuit calculations via Boolean vectors b_i of length n^c such that $b_i(\alpha) = 1$, if α @ *i* accepts , and:

$$\lor \qquad b_{i+1} := S_x^* T_x b_i \qquad \land \qquad b_{i+1} := \neg (S_x^* T_x (\neg b_i))$$

- initially *b*₀ is zero

• output $b_{(\log n)^c}(\text{start})$		
		•
GM (Institute of Computer Science @ UIBK)	Complexity Theory	15/15