

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

Outline

- Summary of Last Lecture: Parallel Complexity
- Exercises
- Probabilistic Turing Machines

Theorem

 $\mathsf{NC} = \mathsf{STA}(\log n, *, (\log n)^{\mathsf{O}(1)})$

$\mathsf{Proof} \subseteq$

- \exists a logspace-uniform family of Boolean circuits C_n of polylog depth and polynomial size
- ∃ logspace-uniform transducer *M*
- construct ATM N that simulates the family C_n : on input x (|x| = n), N runs M to produce C_n and evaluate $C_n(x)$

$\mathsf{Proof}\supseteq$

- \exists alternating logspace machine N of required form
- represent the next-configuration relation as Boolean matrix
- represent ATM computation as circuit calculations via Boolean vectors
 b_i such that b_i(α) = 1, if α @ i accepts
- initially b_0 is zero; output $b_{(\log n)^c}(\text{start})$

GM (Institute of Computer Science @ UIBK)	Complexity Theory	9/14
Homework		
Homework		
 Miscellaneous Exercises 	29.	
• Homework 6.2.		
• Homework 6.3.		

Probabilistic Turing Machines

Definition

- a probabilistic Turing machine *M* is a TM and ∃ extra read-only tape containing random bits
- random bits may be consulted to decide on the next step
- outcome M(x, y) for input x and random bits y
- *M*
 - is T(n) time bounded if \forall input x it runs in T(n) steps
 - is S(n) space bounded if \forall input x it needs S(n) space

Complexity Theory

for any random bits y

• probability of accept for T(n) time bounded M:

$$\frac{\Pr_y(M(x,y) \text{ accepts}) = \frac{|\{y \in \{0,1\}^k \mid M(x,y) \text{ accepts}\}|}{2^k}$$
for $k \ge T(|x|)$

```
GM (Institute of Computer Science @ UIBK)
Probabilistic Turing Machines
```

Definition

```
a set A is in RP if \exists probabilitic TM M with polytime bound n^c such that
```

```
1 if x \in A, then \Pr_y(M(x, y) \text{ accepts}) \ge \frac{3}{4}
```

```
2 if x \notin A, then \Pr_y(M(x, y) \text{ accepts}) = 0
```

Fact

 $\mathsf{P}\subseteq\mathsf{RP}\subseteq\mathsf{NP}$

Definition

```
a set A is in BPP if \exists probabilitic TM M with polytime bound n^c such that
```

```
1 if x \in A, then \Pr_y(M(x, y) \text{ accepts}) \ge \frac{3}{4}

3 if x \notin A, then \Pr_y(M(x, y) \text{ accepts}) \le \frac{1}{4}
```

2 if $x \notin A$, then $\Pr_y(M(x, y) \text{ accepts}) \leq \frac{1}{4}$

Fact

 $\mathsf{RP} \subseteq \mathsf{BPP}$ and BPP is closed under complement

11/14

RP

BPP

Probabilistic Tests for Polynomials

Example

given a polynomial $p(x_1, \ldots, x_n)$ (of low degree) with integer coefficients, verify whether it is identical 0

Restriction

typicall the polynomial is not given in normal form but as a straight-line program

Theorem

Schwartz-Zippel Lemma

- let F be field, let $S \subseteq F$ be arbitrary
- let $p(\overline{x})$ be a nonzero polynomial of n variables over F and total degree d

then the equation $p(\overline{x}) = 0$ has at most $d \cdot |S|^{n-1}$ solutions in S^n

GM (Institute of Computer Science @ UIBK) Probabilistic Turing Machines Complexity Theory

Corollary

- let F be field, let $S \subseteq F$ be arbitrary
- let $p(\overline{x})$ be a nonzero polynomial of n variables over F and total degree d

if p is evaluated on (s_1, \ldots, s_n) chosen at random, then

$$\Pr(p(s_1,\ldots,s_n)=0) \leq \frac{d}{|S|}$$

Example

perfect matching

a perfect matching in a bipartite graph G in a subset M of the edges such that

1 no two edges in M share a common vertex

2 each vertex is the endpoint of some edge in M

Fact

represent G as a matrix (the Tutte matrix) A, then det A is a nonzero polynomial of degree n with one monomial for each perfact matching

13/14