Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK
Summer 2008

Outline

- Summary of Last Lecture: Parallel Complexity
- Exercises
- Probabilistic Turing Machines

Theorem
$\mathrm{NC}=\mathrm{STA}\left(\log n, *,(\log n)^{\mathrm{O}(1)}\right)$

Proof \subseteq

- \exists a logspace-uniform family of Boolean circuits C_{n} of polylog depth and polynomial size
- \exists logspace-uniform transducer M
- construct ATM N that simulates the family C_{n} : on input $x(|x|=n), N$ runs M to produce C_{n} and evaluate $C_{n}(x)$

Proof \supseteq

- \exists alternating logspace machine N of required form
- represent the next-configuration relation as Boolean matrix
- represent ATM computation as circuit calculations via Boolean vectors b_{i} such that $b_{i}(\alpha)=1$, if $\alpha @ i$ accepts
- initially b_{0} is zero; output $b_{(\log n) c}$ (start)

Homework

- Miscellaneous Exercises 29.
- Homework 6.2.
- Homework 6.3.

Probabilistic Turing Machines

Definition

- a probabilistic Turing machine M is a TM and \exists extra read-only tape containing random bits
- random bits may be consulted to decide on the next step
- outcome $M(x, y)$ for input x and random bits y
- M
- is $T(n)$ time bounded if \forall input x it runs in $T(n)$ steps
- is $S(n)$ space bounded if \forall input x it needs $S(n)$ space for any random bits y
- probability of accept for $T(n)$ time bounded M :

$$
\operatorname{Pr}_{y}(M(x, y) \text { accepts })=\frac{\mid\left\{y \in\{0,1\}^{k} \mid M(x, y) \text { accepts }\right\} \mid}{2^{k}}
$$

for $k \geqslant T(|x|)$

Definition

a set A is in RP if \exists probabilitic TM M with polytime bound n^{c} such that
1 if $x \in A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $) \geqslant \frac{3}{4}$
2 if $x \notin A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $)=0$
Fact
$P \subseteq R P \subseteq N P$

Definition

a set A is in BPP if \exists probabilitic TM M with polytime bound n^{c} such that
1 if $x \in A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $) \geqslant \frac{3}{4}$
2 if $x \notin A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $) \leqslant \frac{1}{4}$
Fact
$R P \subseteq B P P$ and BPP is closed under complement

Probabilistic Tests for Polynomials

Example
given a polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ (of low degree) with integer coefficients, verify whether it is identical 0

Restriction

typicall the polynomial is not given in normal form but as a straight-line program

Theorem

- let F be field, let $S \subseteq F$ be arbitrary
- let $p(\bar{x})$ be a nonzero polynomial of n variables over F and total degree d
then the equation $p(\bar{x})=0$ has at most $d \cdot|S|^{n-1}$ solutions in S^{n}

Corollary

- let F be field, let $S \subseteq F$ be arbitrary
- let $p(\bar{x})$ be a nonzero polynomial of n variables over F and total degree d
if p is evaluated on $\left(s_{1}, \ldots, s_{n}\right)$ chosen at random, then

$$
\operatorname{Pr}\left(p\left(s_{1}, \ldots, s_{n}\right)=0\right) \leqslant \frac{d}{|S|}
$$

Example
perfect matching a perfect matching in a bipartite graph G in a subset M of the edges such that
1 no two edges in M share a common vertex
$\boxed{2}$ each vertex is the endpoint of some edge in M
Fact
represent G as a matrix (the Tutte matrix) A, then $\operatorname{det} A$ is a nonzero polynomial of degree n with one monomial for each perfact matching

