gic gic	Outline
Complexity Theory Georg Moser Institute of Computer Science @ UIBK Summer 2008	 Summary of Last Lecture: Parallel Complexity Exercises Probabilistic Turing Machines
Summary of Last Lecture	GM (Institute of Computer Science @ UIBK) Complexity Theory 8/14 Homework
Theorem NC = STA(log $n, *, (\log n)^{O(1)}$)	Homework
 Proof ⊆ ∃ a logspace-uniform family of Boolean circuits C_n of polylog depth and polynomial size ∃ logspace-uniform transducer M construct ATM N that simulates the family C_n: on input x (x = n), N runs M to produce C_n and evaluate C_n(x) 	Miscellaneous Exercises 29.Homework 6.2.
 Proof ⊇ ∃ alternating logspace machine N of required form represent the next-configuration relation as Boolean matrix 	• Homework 6.3.
 represent ATM computation as circuit calculations via Boolean vectors b_i such that b_i(α) = 1, if α @ i accepts initially b₀ is zero; output b_{(log n)^c}(start) 	
	GM (Institute of Computer Science @ UIBK) Complexity Theory 10/14

Probabilistic Turing Machines	Probabilistic Turing Machines
Probabilistic Turing Machines Definition • a probabilistic Turing machine <i>M</i> is a TM and \exists extra read-only tape containing random bits • random bits may be consulted to decide on the next step • outcome $M(x, y)$ for input <i>x</i> and random bits <i>y</i> • <i>M</i> • is $T(n)$ time bounded if \forall input <i>x</i> it runs in $T(n)$ steps • is $S(n)$ space bounded if \forall input <i>x</i> it needs $S(n)$ space for any random bits <i>y</i> • probability of accept for $T(n)$ time bounded <i>M</i> : $\Pr_{Y}(M(x, y) accepts) = \frac{ \{y \in \{0, 1\}^k M(x, y) accepts\} }{2^k}$ for $k \ge T(x)$	DefinitionRPa set A is in RP if \exists probabilitic TM M with polytime bound n^c such thatI if $x \in A$, then $\Pr_Y(M(x, y) accepts) \ge \frac{3}{4}$ 2 if $x \notin A$, then $\Pr_Y(M(x, y) accepts) = 0$ Fact $P \subseteq RP \subseteq NP$ DefinitionBPPa set A is in BPP if \exists probabilitic TM M with polytime bound n^c such thatI if $x \in A$, then $\Pr_Y(M(x, y) accepts) \ge \frac{3}{4}$ 2 if $x \notin A$, then $\Pr_Y(M(x, y) accepts) \ge \frac{3}{4}$ I if $x \notin A$, then $\Pr_Y(M(x, y) accepts) \le \frac{3}{4}$ FactRP \subseteq BPP and BPP is closed under complement
GM (Institute of Computer Science @ UIBK) Complexity Theory 11/14	GM (Institute of Computer Science @ UIBK) Complexity Theory 12/14
Probabilistic Turing Machines Probabilistic Tests for Polynomials	Probabilistic Turing Machines Corollary • let F be field, let $S \subseteq F$ be arbitrary • let $p(\overline{x})$ be a nonzero polynomial of n variables over F and total
 Example given a polynomial p(x1,,xn) (of low degree) with integer coefficients, verify whether it is identical 0 Restriction typicall the polynomial is not given in normal form but as a straight-line program 	degree d if p is evaluated on $(s_1,, s_n)$ chosen at random, then $\Pr(p(s_1,, s_n) = 0) \leq \frac{d}{ S }$ Example perfect matching
Theorem Schwartz-Zippel Lemma	a perfect matching in a bipartite graph G in a subset M of the edges such that
• let F be field, let $S \subseteq F$ be arbitrary	1 no two edges in M share a common vertex

Complexity Theory