

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

Outline

- Summary of Last Lecture: Probabilistic Turing Machines
- Project Assignment
- Probabilistic Turing Machines (Proof)

Probabilistic Turing Machines

Definition

- a probabilistic Turing machine M is a TM and ∃ extra read-only tape containing random bits
- random bits may be consulted to decide on the next step
- outcome M(x, y) for input x and random bits y
- M
 - is T(n) time bounded if \forall input x it runs in T(n) steps
 - is S(n) space bounded if \forall input x it needs S(n) space

for any random bits y

• probability of accept for T(n) time bounded M:

$$\Pr_{m{y}}(M(x,y) ext{ accepts}) = rac{|\{y \in \{0,1\}^k \mid M(x,y) ext{ accepts}\}|}{2^k}$$
 for $k \geqslant T(|x|)$

GM (Institute of Computer Science @ UIBK) Complexity Theory

Definition

RP

a set A is in RP if \exists probabilitic TM M with polytime bound n^c such that

1 if
$$x \in A$$
, then $\Pr_y(M(x, y) \text{ accepts}) \geqslant \frac{3}{4}$

2 if
$$x \notin A$$
, then $Pr_y(M(x,y) \text{ accepts}) = 0$

Fact

$$P \subseteq RP \subseteq NP$$

Definition

BPP

a set A is in BPP if \exists probabilitic TM M with polytime bound n^c such that

1 if
$$x \in A$$
, then $\Pr_y(M(x, y) \text{ accepts}) \geqslant \frac{3}{4}$

2 if
$$x \notin A$$
, then $\Pr_{V}(M(x, y) \text{ accepts}) \leqslant \frac{1}{4}$

Fact

 $RP \subseteq BPP$ and BPP is closed under complement

Homework

• Project assignment: Find references to Csanky's algorithm and show that this algorithm is in NC.

GM (Institute of Computer Science @ UIBK)

Complexity Theory

11/14

Amplification

Amplification

Lemma

Amplification Lemma

if $A \in \mathsf{RP}$, then \forall polynomials n^d

 \exists probabilistic polytime TM M such that on input x (n = |x|):

if $x \in A$, then $\Pr_{y}(M(x, y) \text{ accepts}) \geqslant 1 - 2^{-n^{d}}$

2 if $x \notin A$, then $Pr_y(M(x, y) \text{ accepts}) = 0$

Lemma

if $A \in \mathsf{BPP}$, then \forall polynomials n^d

 \exists probabilistic polytime TM M such that on input x (n = |x|):

1 if $x \in A$, then $\Pr_y(M(x, y) \text{ accepts}) \geqslant 1 - 2^{-n^d}$

2 if $x \notin A$, then $\Pr_{v}(M(x, y) \text{ accepts}) \leq 2^{-n^d}$

Theorem

 $\mathsf{BPP} \subseteq \Sigma_2^p \cap \Pi_2^p$

$\mathsf{BPP} \subseteq \Sigma_2^\mathsf{p} \cap \Pi_2^\mathsf{p}$

Corollary

let $A \in \mathsf{BPP}$

- \exists probabilistic polytime TM M running in time n^c such that
- ∀ inputs x
 - if $x \in A$, then $\Pr_{V}(M(x, y) \text{ accepts}) \geqslant 1 2^{-n}$
 - if $x \notin A$, then $\Pr_{V}(M(x, y) \text{ accepts}) \leq 2^{-n}$

Definition

fix input x and let $m = n^c$

$$A_x = \{y \in \{0,1\}^m \mid M(x,y) \text{ accepts}\}\$$

 $R_x = \{y \in \{0,1\}^m \mid M(x,y) \text{ rejects}\} = \{0,1\}^m - A_x$

Fact

for $x \in A$

$$|A_x| \geqslant 2^m - 2^{m-n}$$
 and $|R_x| \leqslant 2^{m-n}$

for $x \notin A$

$$|R_x| \geqslant 2^m - 2^{m-n}$$
 and $|A_x| \leqslant 2^{m-n}$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

13/14

$\mathsf{BPP}\subseteq \Sigma_2^{\mathsf{P}}\cap \mathsf{\Pi}_2^{\mathsf{P}}$

Claim

 $x \in A$ if and only if $\exists z_1, \ldots, z_m \ (|z_i| = m)$ such that

$$\{\mathbf{y} \oplus \mathbf{z}_j \mid 1 \leqslant j \leqslant m, \mathbf{y} \in A_{\mathbf{x}}\} = \{0, 1\}^m$$

(\oplus is bitwise sum mod 2)

Proof (of BPP $\subseteq \Sigma_2^p \cap \Pi_2^p$)

we only need to show BPP $\subseteq \Sigma_2^p$ as coBPP = BPP let $A \in BPP$, we show $A \in \Sigma_2^p$:

- 1 guess z_1, \ldots, z_m
- 2 generate all w of length m
- 3 check

$$w \in \{y \oplus z_j \mid 1 \leqslant j \leqslant m, y \in A_x\}$$

for that

- test $\{w \oplus z_i \mid 1 \leqslant j \leqslant m\} \cap A_x \neq \emptyset$
- by running $M(x, w \oplus z_i)$ for all j