Outline

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

- Summary of Last Lecture: Probabilistic Turing Machines
- Project Assignment
- Probabilistic Turing Machines (Proof)

Probabilistic Turing Machines

Definition

- a probabilistic Turing machine M is a TM and \exists extra read-only tape containing random bits
- random bits may be consulted to decide on the next step
- outcome $M(x, y)$ for input x and random bits y
- M
- is $T(n)$ time bounded if \forall input x it runs in $T(n)$ steps
- is $S(n)$ space bounded if \forall input x it needs $S(n)$ space for any random bits y
- probability of accept for $T(n)$ time bounded M :

$$
\operatorname{Pr}_{y}(M(x, y) \text { accepts })=\frac{\mid\left\{y \in\{0,1\}^{k} \mid M(x, y) \text { accepts }\right\} \mid}{2^{k}}
$$

for $k \geqslant T(|x|)$
a set A is in RP if \exists probabilitic TM M with polytime bound n^{c} such that
1 if $x \in A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $) \geqslant \frac{3}{4}$
2 if $x \notin A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $)=0$

Fact

$P \subseteq R P \subseteq N P$

Definition

a set A is in BPP if \exists probabilitic TM M with polytime bound n^{c} such that
1 if $x \in A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $) \geqslant \frac{3}{4}$
2 if $x \notin A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $) \leqslant \frac{1}{4}$
Fact
$\mathrm{RP} \subseteq \mathrm{BPP}$ and BPP is closed under complement

Homework

- Project assignment: Find references to Csanky's algorithm and show that this algorithm is in NC.

Amplification

Lemma

if $A \in \mathrm{RP}$, then \forall polynomials n^{d}
\exists probabilistic polytime TM M such that on input $x(n=|x|)$:
11 if $x \in A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $) \geqslant 1-2^{-n^{d}}$
2 if $x \notin A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $)=0$
Lemma
if $A \in B P P$, then \forall polynomials n^{d}
\exists probabilistic polytime TM M such that on input $x(n=|x|)$:
1 if $x \in A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $) \geqslant 1-2^{-n^{d}}$
2 if $x \notin A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $) \leqslant 2^{-n^{d}}$

Theorem
$\mathrm{BPP} \subseteq \Sigma_{2}^{\mathrm{p}} \cap \Pi_{2}^{\mathrm{p}}$

$\mathrm{BPP} \subseteq \Sigma_{2}^{\mathrm{p}} \cap \Pi_{2}^{\mathrm{p}}$

Corollary
let $A \in \mathrm{BPP}$

- \exists probabilistic polytime TM M running in time n^{c} such that
- \forall inputs x
- if $x \in A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $) \geqslant 1-2^{-n}$
- if $x \notin A$, then $\operatorname{Pr}_{y}(M(x, y)$ accepts $) \leqslant 2^{-n}$

Definition

fix input x and let $m=n^{c}$

$$
\begin{aligned}
& A_{x}=\left\{y \in\{0,1\}^{m} \mid M(x, y) \text { accepts }\right\} \\
& R_{x}=\left\{y \in\{0,1\}^{m} \mid M(x, y) \text { rejects }\right\}=\{0,1\}^{m}-A_{x}
\end{aligned}
$$

Fact
for $x \in A$

$$
\left|A_{x}\right| \geqslant 2^{m}-2^{m-n} \quad \text { and } \quad\left|R_{x}\right| \leqslant 2^{m-n}
$$

for $x \notin A$

$$
\left|R_{x}\right| \geqslant 2^{m}-2^{m-n} \quad \text { and } \quad\left|A_{x}\right| \leqslant 2^{m-n}
$$

Claim

$x \in A$ if and only if $\exists z_{1}, \ldots, z_{m}\left(\left|z_{i}\right|=m\right)$ such that

$$
\left\{y \oplus z_{j} \mid 1 \leqslant j \leqslant m, y \in A_{x}\right\}=\{0,1\}^{m}
$$

(\oplus is bitwise sum mod 2)
Proof (of BPP $\subseteq \Sigma_{2}^{\mathrm{p}} \cap \Pi_{2}^{\mathrm{p}}$)
we only need to show $\mathrm{BPP} \subseteq \Sigma_{2}^{\mathrm{p}}$ as coBPP $=\mathrm{BPP}$
let $A \in \mathrm{BPP}$, we show $A \in \sum_{2}^{\mathrm{p}}$:
1 guess z_{1}, \ldots, z_{m}
2 generate all w of length m
3 check

$$
w \in\left\{y \oplus z_{j} \mid 1 \leqslant j \leqslant m, y \in A_{x}\right\}
$$

for that

- test $\left\{w \oplus z_{j} \mid 1 \leqslant j \leqslant m\right\} \cap A_{x} \neq \varnothing$
- by running $M\left(x, w \oplus z_{j}\right)$ for all j

