

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

GM (Institute of Computer Science @ UIBK)

Complexity Theory

1/17

Outline

- Summary of Last Lecture: Crossing Sequences
- Exercises
- Linear Speed-Up
- Savitch's Theorem

Theorem

If M runs in $o(\log \log n)$ space, then M accepts a regular set

Fact

 \exists a non-regular set accepted in $O(\log \log n)$ space

$$\{\#b_k(0)\#b_k(1)\#b_k(2)\#\dots\#b_k(2^k-1)\#\mid k\geqslant 0\}$$

 $b_k(n)$ is the k-bit (binary) representation of n

Proof

using similar crossing argument, but the following lemma

Lemma

If here is a fixed finite bound k on the amount of space used by M on accepted inputs, then L(M) is a regular set

GM (Institute of Computer Science @ UIBK)

Complexity Theory

9/17

inear Speedup

Time- and Space-Boundedness

let $T: \mathbb{N} \to \mathbb{N}$ and $S: \mathbb{N} \to \mathbb{N}$ be numeric functions; as usual we write $\log n$ for $\lceil \log n \rceil$, etc.

Definition

time-bounded

- nondeterministic TM runs in time T(n) or
- TM is T(n) time-bounded
- if on all but finitely many inputs x, no computation path takes more than T(|x|) steps before halting

Definition

space-bounded

- nondeterministic TM runs in space S(n) or
- TM is S(n) space-bounded
- if on all but finitely many inputs x, no computation path uses more than S(|x|) worktape cells

GM (Institute of Computer Science @ UIBK)

Complexity Theory

Linear Speedup

Theorem linear speed-up

let $T(n) \ge n+1$, $S(n) \ge \Omega(\log n)$; for any $c \ge 1$:

 $\mathsf{DTIME}(cT(n)) \subseteq \mathsf{DTIME}(T(n))$ $\mathsf{NTIME}(cT(n)) \subseteq \mathsf{NTIME}(T(n))$ $\mathsf{DSPACE}(cS(n)) \subseteq \mathsf{DSPACE}(S(n))$ $\mathsf{NSPACE}(cS(n)) \subseteq \mathsf{NSPACE}(S(n))$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

11/17

Common Complexity Classes

```
LOGSPACE := DSPACE(log n) NPSPACE := NSPACE(n^{O(1)})

NLOGSPACE := NSPACE(log n) EXPTIME := DTIME(2^{n^{O(1)}})

P := DTIME(n^{O(1)}) NEXPTIME := NTIME(2^{n^{O(1)}})

NP := NTIME(n^{O(1)}) EXPSPACE := DSPACE(2^{n^{O(1)}})

PSPACE := DSPACE(n^{O(1)}) NEXPSPACE := NSPACE(n^{O(1)})
```

we abbreviate $\bigcup_{k>0} \mathsf{DTIME}(n^k)$ by $\mathsf{DTIME}(n^{O(1)})$; similarly for other classes

Basic Inclusions

 $\mathsf{DTIME}(T(n)) \subseteq \mathsf{NTIME}(T(n))$ $\mathsf{DSPACE}(S(n)) \subseteq \mathsf{NSPACE}(S(n))$

Theorem 1

assume $S(n) \ge \log n$, then

- ①: DTIME $(T(n)) \subseteq DSPACE(T(n))$
- ②: $NTIME(T(n)) \subseteq NSPACE(T(n))$
- 3: DSPACE(S(n)) \subseteq DTIME($2^{O(S(n))}$)
- $4: NSPACE(S(n)) \subseteq NTIME(2^{O(S(n))})$

Proof

- 1,2 follow as a TM can scan only one tape cell in every step
- 3,4 we show how to modify a given TM M running in space S(n)
 - ullet assume M features a single read-only input tape; a single worktape
 - there are at most $qnS(n)d^{S(n)} =: c^{S(n)}$ configurations
 - number of states
 - cursor on the input tape
 - S(n) cursor on the worktape
 - 4 d cardinality of the alphabet

GM (Institute of Computer Science @ UIBK)

Complexity Theory

13/17

Linear Speedup

Proof (cont'd)

- ullet any computation path taking more than $c^{S(n)}$ -steps can be shortened
- ullet on a new worktape install a timer counting up to $c^{S(n)}$
 - 1 no extra space, if use encoding in c-ary
 - O(S(n)) extra time for each step
- total time spent: $O(S(n)) \cdot c^{S(n)} = 2^{O(S(n))}$

Theorem 2

assume $S(n) \geqslant \log n$, then

- ①: $NTIME(T(n)) \subseteq DSPACE(T(n))$
- ②: $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$

Proof

① depth-first search on the computation tree the obvious algorithm gives a $T(n)^2$ -space bound to remove the exponenent 2 one wastes time: store only the choice-sequence and recomputes the configuration

Proof (cont'd)

- 2 assume S(n) is space-constructible
 - 11 this means there exists a TM that can be used to mark off S(n) worktape cells
 - 2 write down all configurations of the nondeterministic machine, using at most S(n) space
 - 3 there are at most $c^{S(n)}$ of these, writable (all) in $S(n)c^{S(n)}$ time
 - 4 we inductively mark all configurations reachable from the start configuration
 - 5 this reachability argument works in quadratic time in the number of states
 - 6 we obtain a $d^{S(n)}$ -time bound

GM (Institute of Computer Science @ UIBK)

Complexity Theory

Linear Speedup

Proof (cont'd)

- 2 we get rid of space-constructibility
 - 1 the procedure above is iterated for

$$S = 0, 1, 2, \dots$$

- $\mathbf{2}$ if in this process we need more space, we extend S
- \blacksquare eventually we have to hit S(n) and we can ignore anything beyond

Complexity Theory

4 the total time is a most

$$\sum_{S=0}^{S(n)} d^{S} \leqslant \frac{d^{S(n)+1}-1}{d-1} \ .$$

GM (Institute of Computer Science @ UIBK)

Savitch's Theorem

Theorem

let $S(n) \geqslant \log n$. Then

 $\mathsf{NSPACE}(S(n)) \subseteq \mathsf{DSPACE}(S(n)^2)$,

in particular PSPACE = NPSPACE

GM (Institute of Computer Science @ UIBK)

Complexity Theory

17/17