
Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

GM (Institute of Computer Science @ UIBK) Complexity Theory 1/17

Outline

• Summary of Last Lecture: Crossing Sequences

• Exercises

• Linear Speed-Up

• Savitch’s Theorem

GM (Institute of Computer Science @ UIBK) Complexity Theory 8/17

Summary of Last Lecture

Theorem
If M runs in o(log log n) space, then M accepts a regular set

Fact
∃ a non-regular set accepted in O(log log n) space

{#bk(0)#bk(1)#bk(2)# . . .#bk(2k − 1)# | k > 0}

bk(n) is the k-bit (binary) representation of n

Proof
using similar crossing argument, but the following lemma

Lemma
If here is a fixed finite bound k on the amount of space used by M on
accepted inputs, then L(M) is a regular set

GM (Institute of Computer Science @ UIBK) Complexity Theory 9/17

Linear Speedup

Time- and Space-Boundedness

let T : N → N and S : N → N be numeric functions; as usual we write log n
for dlog ne, etc.

Definition time-bounded

• nondeterministic TM runs in time T (n) or

• TM is T (n) time-bounded

• if on all but finitely many inputs x , no computation path takes more
than T (|x |) steps before halting

Definition space-bounded

• nondeterministic TM runs in space S(n) or

• TM is S(n) space-bounded

• if on all but finitely many inputs x , no computation path uses more
than S(|x |) worktape cells

GM (Institute of Computer Science @ UIBK) Complexity Theory 10/17

Linear Speedup

Linear Speedup

DTIME(T (n)) := {L(M) | M is a deterministic multitape TM running

in time T (n)}
NTIME(T (n)) := {L(M) | M is a nondeterministic multitape TM

running in time T (n)}
DSPACE(S(n)) := {L(M) | M is a deterministic multitape TM running

in space S(n)}
NSPACE(S(n)) := {L(M) | M is a nondeterministic multitape TM

running in space S(n)}

Theorem linear speed-up
let T (n) > n + 1, S(n) > Ω(log n); for any c > 1:

DTIME(cT (n)) ⊆ DTIME(T (n)) NTIME(cT (n)) ⊆ NTIME(T (n))

DSPACE(cS(n)) ⊆ DSPACE(S(n)) NSPACE(cS(n)) ⊆ NSPACE(S(n))

GM (Institute of Computer Science @ UIBK) Complexity Theory 11/17

Linear Speedup

Common Complexity Classes

LOGSPACE := DSPACE(log n) NPSPACE := NSPACE(nO(1))

NLOGSPACE := NSPACE(log n) EXPTIME := DTIME(2nO(1)
)

P := DTIME(nO(1)) NEXPTIME := NTIME(2nO(1)
)

NP := NTIME(nO(1)) EXPSPACE := DSPACE(2nO(1)
)

PSPACE := DSPACE(nO(1)) NEXPSPACE := NSPACE(2nO(1)
)

we abbreviate
⋃

k>0 DTIME(nk) by DTIME(nO(1));
similarly for other classes

Basic Inclusions

DTIME(T (n)) ⊆ NTIME(T (n)) DSPACE(S(n)) ⊆ NSPACE(S(n))

GM (Institute of Computer Science @ UIBK) Complexity Theory 12/17

Linear Speedup

Theorem 1
assume S(n) > log n, then

À : DTIME(T (n)) ⊆ DSPACE(T (n))

Á : NTIME(T (n)) ⊆ NSPACE(T (n))

Â : DSPACE(S(n)) ⊆ DTIME(2O(S(n)))

Ã : NSPACE(S(n)) ⊆ NTIME(2O(S(n)))

Proof
À,Á follow as a TM can scan only one tape cell in every step

Â,Ã we show how to modify a given TM M running in space S(n)

• assume M features a single read-only input tape; a single worktape

• there are at most qnS(n)dS(n) =: cS(n) configurations

1 q — number of states
2 n — cursor on the input tape
3 S(n) — cursor on the worktape
4 d — cardinality of the alphabet

GM (Institute of Computer Science @ UIBK) Complexity Theory 13/17

Linear Speedup

Proof (cont’d)
• any computation path taking more than cS(n)-steps can be shortened

• on a new worktape install a timer counting up to cS(n)

1 no extra space, if use encoding in c-ary
2 O(S(n)) extra time for each step

• total time spent: O(S(n)) · cS(n) = 2O(S(n))

Theorem 2
assume S(n) > log n, then

À : NTIME(T (n)) ⊆ DSPACE(T (n))

Á : NSPACE(S(n)) ⊆ DTIME(2O(S(n)))

Proof
À depth-first search on the computation tree

the obvious algorithm gives a T (n)2-space bound

to remove the exponenent 2 one wastes time: store only the
choice-sequence and recomputes the configuration

GM (Institute of Computer Science @ UIBK) Complexity Theory 14/17

Linear Speedup

Proof (cont’d)

Á assume S(n) is space-constructible

1 this means there exists a TM that can be used to mark off

S(n) worktape cells

2 write down all configurations of the nondeterministic machine,

using at most S(n) space

3 there are at most cS(n) of these, writable (all) in S(n)cS(n) time

4 we inductively mark all configurations reachable from

the start configuration

5 this reachability argument works in quadratic time

in the number of states

6 we obtain a dS(n)-time bound

GM (Institute of Computer Science @ UIBK) Complexity Theory 15/17

Linear Speedup

Proof (cont’d)

Á we get rid of space-constructibility

1 the procedure above is iterated for

S = 0, 1, 2, . . .

2 if in this process we need more space, we extend S

3 eventually we have to hit S(n) and we can ignore anything
beyond

4 the total time is a most

S(n)∑
S=0

dS 6
dS(n)+1 − 1

d − 1
.

GM (Institute of Computer Science @ UIBK) Complexity Theory 16/17

Linear Speedup

Savitch’s Theorem

Theorem
let S(n) > log n. Then

NSPACE(S(n)) ⊆ DSPACE(S(n)2) ,

in particular PSPACE = NPSPACE

GM (Institute of Computer Science @ UIBK) Complexity Theory 17/17

