mputational

gic

Complexity Theory
Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

GM (Institute of Computer Science @ UIBK) Complexity Theory
Outline
e Summary of Last Lecture: Savitch's Theorem
e Exercises
e Deterministic Separation Results
e Nondeterministic Separation Results
[}

A Space-Constructible Function S(n) < O(log log n)

GM (Institute of Computer Science @ UIBK) Complexity Theory

1/17

Theorem 1
Assume S(n) > log n, then

@: DTIME(T(n)) € DSPACE(T(n))
@: NTIME(T(n)) € NSPACE(T(n))
®: DSPACE(S(n)) € DTIME(20((m))
@: NSPACE(S(n)) C NTIME(20((n))

Theorem 2
Assume S(n) > log n, then

®: NTIME(T(n)) € DSPACE(T(n))
@: NSPACE(S(n)) € DTIME(2°G(")

GM (Institute of Computer Science @ UIBK) Complexity Theory

Theorem
Let S(n) > logn. Then

NSPACE(S(n)) € DSPACE(S(n)?),

in particular PSPACE = NPSPACE

9/17

Savitch

GM (Institute of Computer Science @ UIBK) Complexity Theory

Deterministic Separation Results

Theorem

Let S(n) be space-constructible. Then there exists a set in DSPACE(S(n))
that is not in DSPACE(S’(n)) for any S’'(n) = o(S(n)).

Proof

The idea of the proof is to use a diagonalisation argument; let
My, M4, . ..

be a list of all Turing machines with binary input alphabet.

e assume (/) is the code machine M; that
allows simulation by an universal TM

e assume Vi, (i)2 encodes some Turing machine

e assume in the encoding leading zeros are ignored;
i.e., we can pad the code with arbitrary zeros from the left

e hence any M, has arbitrary long codes (by padding)

GM (Institute of Computer Science @ UIBK) Complexity Theory 11/17

Proof (cont'd)
Let x be a binary string and #(x) denotes the number represented by x

Construction of machine M:
mark S(n) many cells on the worktape
simulate M; on input x, where i = #(x)
not exceeding space S(n)
one of the following cases happens:

(a) there is enough space to simulate M; on x:

M reverses the behaviour of M;
if M; accepts, M rejects and vice versa

(b) M; loops:
M loops as well
(c) the simulation needs more space than S(n):

M halts and rejects

GM (Institute of Computer Science @ UIBK) Complexity Theory

Proof (cont'd)
Let M; be o(S(n)) space-bounded, then

e M will simulate M; on x for all sufficiently large x with #(x) =i
e by assumption the simulation doesn’t need more space than S(n)
e hence L(M) # L(M;)

In sum, the Turing machine M differs from any machine running in
o(S5(n)) space. N

Theorem

Let T(n) be time-constructible, T(n) > n. Then there exists a set in
DTIME(T (n)) that is not in DTIME(T’(n)) for any T’(n) such that
T'(n)log T'(n) = o(T(n))

Proof
similar N
GM (Institute of Computer Science @ UIBK) Complexity Theory 13/17

Nondeterministic Separation Results

Lemma
NSPACE(n*) € NSPACE(n*)

Proof
Assume otherwise NSPACE(n*) C NSPACE(n®)
we use the following

Claim
NSPACE(n*) € NSPACE(n®) = NSPACE(n>) C NSPACE(n*)

repeating the pattern of the proof of the claim and using the assumption,
we obtain: NSPACE(n") € NSPACE(n3) hence

NSPACE(n") € NSPACE(n?)

C DSPACE(n°) by Savitch’s theorem
C DSPACE(n") by the previous theorem
C NSPACE(n") ,
which is the desired contradiction.]

GM (Institute of Computer Science @ UIBK) Complexity Theory

Claim
NSPACE(n*) € NSPACE(n*) = NSPACE(n°) C NSPACE(n*)

Proof

e assume M is an arbitrary nondeterministic machine running
in space n°
o let A=L(M)
o consider A" := {x#|x|‘5‘_|x| | x € A}
Construction of machine M':
M’ gets x#™ as input
M’ checks whether m =]x\% — |x|
if yes M’ runs M on x.
M’ needs the same space as M, hence it runs in space
xf? = (3" = et 0o

thus A’ = L(M") € NSPACE(n*) C NSPACE(n3)

GM (Institute of Computer Science @ UIBK) Complexity Theory

Proof (cont'd)

Assume the nondeterministic Turing machine M” accepts A’ in space n

Construction of machine M'":
M"" works on input x

M appends a string of #s of length \x\% — |x| to x
M"" runs M" on the resulting string.
the space used by M” is estimateable by the space used by M"’, hence
T = (13 = 6% < I,

and L(M"") = A.

15/17

3

GM (Institute of Computer Science @ UIBK) Complexity Theory

A Space-Constructible Function S(n) < O(loglog n)

Definition
let /(n) be the least positive number not dividing n
note that ¢(n) is a prime power
¢(n) = O(log n), because for every ¢:

H p> 2$2(¢)

p<{ p prime

Lemma
3 an unbounded space-constructible function S(n) that is O(loglog n),

namely the space needed to accept A = {a" | ¢(n) is prime}.

Lemma
The function [loglog n] is not space constructible.

GM (Institute of Computer Science @ UIBK) Complexity Theory 17/17

