

Outline

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

- Summary of Last Lecture: Savitch's Theorem
- Exercises
- Deterministic Separation Results
- Nondeterministic Separation Results
- A Space-Constructible Function $S(n) \leq O(\log \log n)$

Complexity Theory

1/17 GM (Institute of Computer Science @ III

Complexity Theory

0./-

last Lecture

Theorem 1

Assume $S(n) \geqslant \log n$, then

①: DTIME $(T(n)) \subseteq DSPACE(T(n))$

②: NTIME $(T(n)) \subseteq NSPACE(T(n))$

 $3: \mathsf{DSPACE}(S(n)) \subseteq \mathsf{DTIME}(2^{\mathsf{O}(S(n))})$

 $4: NSPACE(S(n)) \subseteq NTIME(2^{O(S(n))})$

Theorem 2

Assume $S(n) \geqslant \log n$, then

①: NTIME(T(n)) \subseteq DSPACE(T(n))

②: $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$

Theorem

Savitch

Let $S(n) \geqslant \log n$. Then

 $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$,

in particular PSPACE = NPSPACE

Deterministic Separation Results

Theorem

Let S(n) be space-constructible. Then there exists a set in DSPACE(S(n)) that is not in DSPACE(S'(n)) for any S'(n) = o(S(n)).

Proof

The idea of the proof is to use a diagonalisation argument; let

$$M_0, M_1, \dots$$

be a list of all Turing machines with binary input alphabet.

- assume $(i)_2$ is the code machine M_i that allows simulation by an universal TM
- assume $\forall i$, $(i)_2$ encodes some Turing machine
- assume in the encoding leading zeros are ignored; i.e., we can pad the code with arbitrary zeros from the left
- hence any M_i has arbitrary long codes (by padding)

Proof (cont'd)

Let M_i be o(S(n)) space-bounded, then

- M will simulate M_i on x for all sufficiently large x with #(x) = i
- by assumption the simulation doesn't need more space than S(n)
- hence $L(M) \neq L(M_i)$

In sum, the Turing machine M differs from any machine running in o(S(n)) space.

Theorem

Let T(n) be time-constructible, $T(n) \ge n$. Then there exists a set in DTIME(T(n)) that is not in DTIME(T'(n)) for any T'(n) such that $T'(n) \log T'(n) = o(T(n))$

Proof

similar

Proof (cont'd)

Let x be a binary string and #(x) denotes the number represented by x

Construction of machine M:

- 1 mark S(n) many cells on the worktape
- 2 simulate M_i on input x, where i = #(x)not exceeding space S(n)
- 3 one of the following cases happens:
 - (a) there is enough space to simulate M_i on x: M reverses the behaviour of M_i if M_i accepts, M rejects and vice versa
 - (b) M_i loops:

M loops as well

(c) the simulation needs more space than S(n): M halts and rejects

Nondeterministic Separation Results Lemma

$$NSPACE(n^3) \subseteq NSPACE(n^4)$$

Proof

Assume otherwise $NSPACE(n^4) \subset NSPACE(n^3)$ we use the following

Claim

$$NSPACE(n^4) \subseteq NSPACE(n^3) \Longrightarrow NSPACE(n^5) \subseteq NSPACE(n^4)$$

repeating the pattern of the proof of the claim and using the assumption, we obtain: $NSPACE(n^7) \subseteq NSPACE(n^3)$ hence

$$NSPACE(n^7) \subset NSPACE(n^3)$$

 \subset DSPACE(n^6)

by Savitch's theorem

 \subseteq DSPACE(n^7)

by the previous theorem

 \subseteq NSPACE (n^7) .

which is the desired contradiction.

Claim

 $NSPACE(n^4) \subseteq NSPACE(n^3) \Longrightarrow NSPACE(n^5) \subseteq NSPACE(n^4)$

Proof

- assume M is an arbitrary nondeterministic machine running in space n^5
- let A = L(M)
- consider $A' := \{x \# |x|^{\frac{5}{4}} |x| \mid x \in A\}$

Construction of machine M':

- 1 M' gets $x \#^m$ as input
- 2 M' checks whether $m = |x|^{\frac{5}{4}} |x|$
- \blacksquare if yes M' runs M on x.

M' needs the same space as M, hence it runs in space

$$|x|^5 = (|x|^{\frac{5}{4}})^4 = |x\#^{|x|^{\frac{5}{4}} - |x|}|^4$$
 ,

thus $A' = L(M') \in NSPACE(n^4) \subset NSPACE(n^3)$

A Space-Constructible Function $S(n) \leq O(\log \log n)$

Definition

- 1 let $\ell(n)$ be the least positive number not dividing n
- 2 note that $\ell(n)$ is a prime power
- $\ell(n) = O(\log n)$, because for every ℓ :

$$\prod_{p\leqslant \ell} p_{\mathsf{prime}} p \geqslant 2^{\Omega(\ell)}$$

Lemma

 \exists an unbounded space-constructible function S(n) that is $O(\log \log n)$, namely the space needed to accept $A = \{a^n \mid \ell(n) \text{ is prime}\}.$

Lemma

The function $\lceil \log \log n \rceil$ is not space constructible.

Proof (cont'd)

Assume the nondeterministic Turing machine M'' accepts A' in space n^3 .

Construction of machine M''':

- 1 M''' works on input x
- 2 M''' appends a string of #s of length $|x|^{\frac{5}{4}} |x|$ to x
- M''' runs M'' on the resulting string.

the space used by M'' is estimateable by the space used by M''', hence

$$|x\#^{|x|^{\frac{5}{4}}-|x|}|^3=(|x|^{\frac{5}{4}})^3=|x|^{\frac{15}{4}}\leqslant |x|^4$$
 ,

and L(M''') = A.