

xercises	The Immerman-Szelepcsényi Theorem
Homework	TheoremImmerman-SzelepcsényiFor $S(n) \ge \log n$, NSPACE($S(n)$) = $co - NSPACE(S(n))$.
 Miscellaneous Exercises 61 in Kozen, Automata and Computability Homework 1.2 	 Proof Idea 1 assume we have finite set A and a nondeterministic test for membership 2 assume we know the size of A
3 Homework 1.3	3 we can test for non-membership as follows:
4 Homework 2.1	• given y • let $n := A $
5 Homework 2.26 Homework 2.3	 guess n elements x, make sure x ∈ A and x ≠ y hence y ∉ A
	Two cases:
	(1) Assume $S(n)$ is space-constructible
	2 Assume $S(n) \ge \log n$
A (Institute of Computer Science @ UIBK) Complexity Theory 1:	1/25 GM (Institute of Computer Science @ UIBK) Complexity Theory 12/25 The Immerman-Szelepcsényi Theorem
Proof (for 1)	Construction of N
I let <i>M</i> be nondeterministic <i>S</i> (<i>n</i>)-space bounded TM; we wish to build a <i>S</i> (<i>n</i>)-space bounded TM <i>N</i> accepting the complement of L(<i>M</i>)	 lay off S(n) space on the worktape compute sizes A₀ , A₁ , inductively
2 suppose encoding of the configurations of M over Δ $ \Delta = d$	 first A₀ = 1 suppose A_m is computed and written on the worktape: write down β ∈ Δ^{S(n)} determine whether β ∈ A_{m+1}
3 configurations on inputs of length <i>n</i> become strings in $\Delta^{S(n)}$	
4 assume there is a unique accept configuration $ extbf{accept} \in \Delta^{S(n)}$	3 increment counter
5 let start $\in \Delta^{S(n)}$ denote the start configuration on input x x = n	• suppose $ A_{d^{S(n)}} $ is known • guess $ A_{d^{S(n)}} \alpha$'s to verify that start $\stackrel{\leqslant d^{S(n)}}{\longrightarrow} \alpha$ holds
6 if x is accepted, the computation has length $\leq d^{S(n)}$	• test $\alpha \neq \text{accept}$
7 define $A_m = \{ \alpha \in \Delta^{\mathbf{S}(n)} \mid \text{start} \xrightarrow{\leq m} \alpha \}$	• if successful: $accept \notin A_{d^{S(n)}}$ and N can accept
8 thus $A_0 = {\texttt{start}}$ and M accepts x iff $\texttt{accept} \in A_{d^{S(n)}}$	the above steps can be implemented such that N uses at most $S(n)$ space
M (Institute of Computer Science @ UIBK) Complexity Theory 13	3/25 GM (Institute of Computer Science @ UIBK) Complexity Theory 14/25

The Immerman-Szelepcsényi Theorem

Determine $\beta \in A_{m+1}$

- guess $|A_m|$ elements α of A_m in lexicographic order
- verify for each $\alpha \in A_m$ by guessing a path to test start $\stackrel{\leqslant m}{\longrightarrow} \alpha$
- test $\alpha \xrightarrow{\leqslant 1} \beta$
- if $\exists \alpha$ with $\alpha \xrightarrow{=1} \beta$: $\beta \in A_{m+1}$
- if $\forall \alpha$ with $\alpha \not\equiv 1 \beta \notin A_{m+1}$

In sum: the machine N accepts complement of L(M) is space S(n)

Proof (for 2)

GM (Institute of Computer Science @ UIBK)

To remove the space-constructible assumption for S(n) do the construction on the fly, increasing the available space if necessary

Complexity Theory