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Last Lecture

Separation Results

Theorem
Let S(n) be space-constructible. Then there exists a set in DSPACE(S(n))
that is not in DSPACE(S ′(n)) for any S ′(n) = o(S(n)).

Lemma
NSPACE(n3)( NSPACE(n4)

GM (Institute of Computer Science @ UIBK) Complexity Theory 9/25

Last Lecture

A Space-Constructible Function S(n) 6 O(log log n)

Definition
1 let `(n) be the least positive number not dividing n

2 note that `(n) is a prime power

3 `(n) = O(log n), because for every `:∏
p6` p prime

p > 2Ω(`)

Lemma
∃ an unbounded space-constructible function S(n) that is O(log log n),
namely the space needed to accept A = {an | `(n) is prime}.

Lemma
The function dlog log ne is not space constructible.
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Exercises

Homework

1 Miscellaneous Exercises 61 in Kozen, Automata and Computability

2 Homework 1.2

3 Homework 1.3

4 Homework 2.1

5 Homework 2.2

6 Homework 2.3
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The Immerman-Szelepcsényi Theorem

Theorem Immerman-Szelepcsényi Theorem
For S(n) > log n, NSPACE(S(n)) = co − NSPACE(S(n)).

Proof Idea

1 assume we have finite set A and a nondeterministic test for
membership

2 assume we know the size of A

3 we can test for non-membership as follows:

• given y
• let n := |A|
• guess n elements x , make sure x ∈ A and x 6= y
• hence y 6∈ A

Two cases:

À Assume S(n) is space-constructible

Á Assume S(n) > log n
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The Immerman-Szelepcsényi Theorem

Proof (for À)

1 let M be nondeterministic S(n)-space bounded TM;

we wish to build a S(n)-space bounded TM N

accepting the complement of L(M)

2 suppose encoding of the configurations of M over ∆

|∆| = d

3 configurations on inputs of length n become strings in ∆S(n)

4 assume there is a unique accept configuration accept ∈ ∆S(n)

5 let start ∈ ∆S(n) denote the start configuration on input x

|x | = n

6 if x is accepted, the computation has length 6 dS(n)

7 define Am = {α ∈ ∆S(n) | start 6m−−→ α}

8 thus A0 = {start} and M accepts x iff accept ∈ AdS(n)
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The Immerman-Szelepcsényi Theorem

Construction of N

• lay off S(n) space on the worktape S(n) is space-constructible

• compute sizes |A0|, |A1|, . . . inductively

• first |A0| = 1

• suppose |Am| is computed and written on the worktape:

1 write down β ∈ ∆S(n)

2 determine whether β ∈ Am+1

3 increment counter

• suppose |AdS(n) | is known

• guess |AdS(n) | α’s to verify that start
6dS(n)

−−−−→ α holds

• test α 6= accept

• if successful: accept 6∈ AdS(n) and N can accept

the above steps can be implemented such that N uses at most S(n) space
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The Immerman-Szelepcsényi Theorem

Determine β ∈ Am+1

• guess |Am| elements α of Am in lexicographic order

• verify for each α ∈ Am by guessing a path to test start
6m−−→ α

• test α
61−−→ β

• if ∃ α with α
=1−−→ β: β ∈ Am+1

• if ∀ α with α 6 =1−−→ β: β 6∈ Am+1

In sum: the machine N accepts complement of L(M) is space S(n)

Proof (for Á)

To remove the space-constructible assumption for S(n) do the construction
on the fly, increasing the available space if necessary
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