

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

GM (Institute of Computer Science @ UIBK)

Complexity Theory

1/2

Outline

- Summary of Last Lecture: Separation Results
- Exercises
- Logspace Computability
- Logspace Transducers
- Logspace Reducibility
- Completeness

The Immerman-Szelepcsényi Theorem

Theorem

Immerman-Szelepcsényi Theorem

For $S(n) \geqslant \log n$, NSPACE(S(n)) = co - NSPACE(S(n)).

Proof Idea

- 1 assume we have finite set A and a nondeterministic test for membership
- $\mathbf{2}$ assume we know the size of A
- 3 we can test for non-membership as follows:
 - given y
 - let n := |A|
 - guess *n* elements *x*, make sure $x \in A$ and $x \neq y$
 - hence $y \notin A$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

17/25

Homework

- 1 Homework 3.1
- 2 Homework 3.3
- 3 Homework 6.1
- 4 Miscellaneous Exercise 9

GM (Institute of Computer Science @ UIBK)

Logspace Computability

The following resources are equally powerful:

- logarithmic workspace
- 2 counting up to the length of the input n
- 3 "finite fingers"

the following automata describe the same class of languages:

- 1 logspace-bounded TMs
- 2 k-counter automaton with linearly bounded counters
 - automata with two-way read-only input head
 - k integer counters, tests for zero, add, subtract
 - counters can hold values between 0 and n
- 8 k-headed two-way finite automaton (k-FA for short)
 - k two-way read-only input heads
 - can only move on the input

GM (Institute of Computer Science @ UIBK)

Complexity Theory

19/25

Logspace Transducers

Logspace Transducers

Definition

logspace transducer

- a total deterministic logspace-bounded TM with output is called logspace transducer
- total means: it halts on all inputs
- with output means: ∃ write-only output tape
- hence, a logspace transducer has:
 - 1 a two-way read-only input tape
 - 2 a two-way read/write logspace-bounded worktape initially blank
 - 3 a write-only left-to-right output tape initially blank
 - Σ is the input alphabet
 - I I is the worktape alphabet

GM (Institute of Computer Science @ UIBK)

Complexity Theory

Definition

logspace computable

function $\sigma: \Sigma^* \to \Delta^*$ is logspace computable if \exists logspace transducer computing (in the natural way) σ

Lemma

output of a logspace transducer is polynomially bounded in length, i.e.,

- \forall logspace computable $\sigma \colon \Sigma^* \to \Delta^*$
- ∃ constant d
- $\forall x \in \Sigma^*, |\sigma(x)| \leqslant |x|^d$

Proof

- 1 each step can induce only one output symbol
- 2 and the transducer can run at most $2^{O(\log n)}$ many steps
- 3 otherwise configurations would be repeated

GM (Institute of Computer Science @ UIBK)

Complexity Theory

21/25

Logspace Reducibility

Logspace Reducibility

Definition

logspace reducibility

- for $A \subseteq \Sigma^*$, $B \subseteq \Delta^*$
- we write $A \leq_m^{\log} B$ if \exists logspace-computable function $\sigma \colon \Sigma^* \to \Delta^*$ with

$$x \in A$$
 if and only if $\sigma(x) \in B$

we say A is logspace reducible to B

Lemma ①

the relation \leqslant_m^{\log} is transitive; i.e., from $A \leqslant_m^{\log} B$ and $B \leqslant_m^{\log} C$ follows $A \leqslant_m^{\log} C$

Lemma 2

for $A \subseteq \Sigma^*$: $A \in \mathsf{LOGSPACE}$ iff $A \leqslant_m^{\mathsf{log}} \{0,1\}$

Lemma

if $A \leq_m^{\log} B$ and $B \in \mathsf{LOGSPACE}$, then $A \in \mathsf{LOGSPACE}$

Proof

- **1** assume $A \leq_m^{\log} B$ and $B \in LOGSPACE$
- 2 by Lemma 2 we have $B \leqslant_m^{\log} \{0,1\}$
- 3 by Lemma ① we have $A \leq_m^{\log} \{0,1\}$
- 4 hence $A \in \mathsf{LOGSPACE}$ by Lemma 2

Definition

we write \leq_m^p for Karp reducibility,

i.e., the sometimes studied polytime many-one reducibility

Lemma

if $A \leq_m^{\log} B$, then $A \leq_m^{p} B$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

23/25

Completeness

Completeness

Definition hardness

- a set $A \subseteq \Sigma^*$ is \leqslant_m^{\log} -hard for a complexity class $\mathcal C$ if
 - $\forall B \in \mathcal{C}$ we have $B \leqslant_m^{\log} A$

Definition

completeness

- a set $A\subseteq \Sigma^*$ is complete for $\mathcal C$ with respect to $\leqslant_m^{\mathsf{log}}$ if
 - **1** A is \leq_m^{\log} -hard for \mathcal{C}
 - $A \in \mathcal{C}$

Definition MAZE

- given a directed graph G = (V, E) and nodes $s, t \in V$
- determine whether there is a directed path from s to t in G
- this problem is called MAZE or directed graph reachability

Theorem

Jones, Lien, and Lasser (1976)

 $\mathsf{MAZE} \ \mathsf{is} \leqslant^{\mathsf{log}}_{\mathit{m}}\mathsf{-complete} \ \mathsf{for} \ \mathsf{NLOGSPACE}$

Proof

on the black board

Corollary

 $\mathsf{MAZE} \in \mathsf{LOGSPACE} \text{ if and only if } \mathsf{LOGSPACE} = \mathsf{NLOGSPACE}$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

25/25