

Logspace Computability	Logspace Transducers
The following resources are equally powerful:	Definition logspace transducer
1 logarithmic workspace	• a total deterministic logspace bounded TM with output
2 counting up to the length of the input n	is called logspace transducer
3 "finite fingers"	 total means: it halts on all inputs
the following automata describe the same class of languages:	 with output means: ∃ write-only output tape
1 logspace-bounded TMs	 hence, a logspace transducer has:
2 k-counter automaton with linearly bounded counters	1 a two-way read-only input tape
• automata with two-way read-only input head	2 a two-way read/write logspace-bounded worktape initially blank
 k integer counters, tests for zero, add, subtract counters can hold values between 0 and n 	3 a write-only left-to-right output tape initially blank
\mathbf{I} k-headed two-way finite automaton (k-FA for short)	$\frac{4}{2} \Sigma \text{ is the input alphabet}$
 k two-way read-only input heads 	5 I is the worktape alphabet
can only move on the input	
GM (Institute of Computer Science @ UIBK) Complexity Theory 19/25 Logspace Transducers	GM (Institute of Computer Science @ UIBK) Complexity Theory 20/25 Logspace Reducibility
Definition	Logspace Reducibility
function $\sigma: \Sigma^* \to \Lambda^*$ is logspace computable	
if \exists logspace transducer computing (in the natural way) σ	Definition logspace reducibility
	• for $A \subseteq \Sigma^*$, $B \subseteq \Delta^*$
Lemma	• for $A \subseteq \Sigma^*$, $B \subseteq \Delta^*$ • we write $A \leq_m^{\log} B$
Lemma output of a logspace transducer is polynomially bounded in length, i.e.,	 for A ⊆ Σ*, B ⊆ Δ* we write A≤^{log}_mB if ∃ logspace-computable function σ: Σ* → Δ* with
Lemma output of a logspace transducer is polynomially bounded in length, i.e., • \forall logspace computable $\sigma \colon \Sigma^* \to \Delta^*$	 for A ⊆ Σ*, B ⊆ Δ* we write A≤^{log}_mB if ∃ logspace-computable function σ: Σ* → Δ* with
Lemma output of a logspace transducer is polynomially bounded in length, i.e., • \forall logspace computable $\sigma \colon \Sigma^* \to \Delta^*$ • \exists constant d	 for A ⊆ Σ*, B ⊆ Δ* we write A≤^{log}_mB if ∃ logspace-computable function σ: Σ* → Δ* with x ∈ A if and only if σ(x) ∈ B
Lemma output of a logspace transducer is polynomially bounded in length, i.e., • \forall logspace computable $\sigma \colon \Sigma^* \to \Delta^*$ • \exists constant d • $\forall x \in \Sigma^*, \sigma(x) \leq x ^d$	 for A ⊆ Σ*, B ⊆ Δ* we write A≤^{log}_mB if ∃ logspace-computable function σ: Σ* → Δ* with x ∈ A if and only if σ(x) ∈ B we say A is logspace reducible to B
Lemma output of a logspace transducer is polynomially bounded in length, i.e., • \forall logspace computable $\sigma \colon \Sigma^* \to \Delta^*$ • \exists constant d • $\forall x \in \Sigma^*, \sigma(x) \leq x ^d$	 for A ⊆ Σ*, B ⊆ Δ* we write A≤^{log} B if ∃ logspace-computable function σ: Σ* → Δ* with x ∈ A if and only if σ(x) ∈ B we say A is logspace reducible to B Lemma ①
Lemma output of a logspace transducer is polynomially bounded in length, i.e., • \forall logspace computable $\sigma \colon \Sigma^* \to \Delta^*$ • \exists constant d • $\forall x \in \Sigma^*, \sigma(x) \leq x ^d$ Proof	 for A ⊆ Σ*, B ⊆ Δ* we write A≤^{log}_mB if ∃ logspace-computable function σ: Σ* → Δ* with x ∈ A if and only if σ(x) ∈ B we say A is logspace reducible to B Lemma ① the relation ≤^{log}_m is transitive; i.e.,
Lemma output of a logspace transducer is polynomially bounded in length, i.e., • \forall logspace computable $\sigma \colon \Sigma^* \to \Delta^*$ • \exists constant d • $\forall x \in \Sigma^*, \sigma(x) \leq x ^d$ Proof • each step can induce only one output symbol	• for $A \subseteq \Sigma^*$, $B \subseteq \Delta^*$ • we write $A \leq_m^{\log} B$ if \exists logspace-computable function $\sigma \colon \Sigma^* \to \Delta^*$ with $x \in A$ if and only if $\sigma(x) \in B$ • we say A is logspace reducible to B Lemma ① the relation \leq_m^{\log} is transitive; i.e., from $A \leq_m^{\log} B$ and $B \leq_m^{\log} C$ follows $A \leq_m^{\log} C$
Lemma output of a logspace transducer is polynomially bounded in length, i.e., • \forall logspace computable $\sigma \colon \Sigma^* \to \Delta^*$ • \exists constant d • $\forall x \in \Sigma^*$, $ \sigma(x) \leq x ^d$ Proof 1 each step can induce only one output symbol 2 and the transducer can run at most $2^{O(\log n)}$ many steps 3 otherwise configurations would be repeated	 for A ⊆ Σ*, B ⊆ Δ* we write A≤^{log} B if ∃ logspace-computable function σ: Σ* → Δ* with x ∈ A if and only if σ(x) ∈ B we say A is logspace reducible to B Lemma ① the relation ≤^{log}_m is transitive; i.e., from A ≤^{log}_m B and B ≤^{log}_m C follows A ≤^{log}_m C
 Lemma output of a logspace transducer is polynomially bounded in length, i.e., ∀ logspace computable σ: Σ* → Δ* ∃ constant d ∀ x ∈ Σ*, σ(x) ≤ x ^d Proof each step can induce only one output symbol and the transducer can run at most 2^{O(log n)} many steps otherwise configurations would be repeated 	 for A ⊆ Σ*, B ⊆ Δ* we write A ≤ ^{log}_m B if ∃ logspace-computable function σ: Σ* → Δ* with x ∈ A if and only if σ(x) ∈ B we say A is logspace reducible to B Lemma ① the relation ≤ ^{log}_m is transitive; i.e., from A ≤ ^{log}_m B and B ≤ ^{log}_m C follows A ≤ ^{log}_m C Lemma ② for A ⊆ Σ*, A ⊆ LOCSDACE : ff A ≤ ^{log}_m (0, 1)
 Lemma output of a logspace transducer is polynomially bounded in length, i.e., ∀ logspace computable σ: Σ* → Δ* ∃ constant d ∀ x ∈ Σ*, σ(x) ≤ x ^d Proof each step can induce only one output symbol and the transducer can run at most 2^{O(log n)} many steps otherwise configurations would be repeated 	 for A ⊆ Σ*, B ⊆ Δ* we write A ≤ ^{log}_mB if ∃ logspace-computable function σ: Σ* → Δ* with x ∈ A if and only if σ(x) ∈ B we say A is logspace reducible to B Lemma ① the relation ≤ ^{log}_m is transitive; i.e., from A ≤ ^{log}_m B and B ≤ ^{log}_m C follows A ≤ ^{log}_m C Lemma ② for A ⊆ Σ*: A ∈ LOGSPACE iff A ≤ ^{log}_m {0,1}

Complexity Theory

GM (Institute of Computer Science @ UIBK)

21/25 GM (Institute of Computer Science @ UIBK)

Complexity Theory

22/25

