Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK
Summer 2008

Outline

- Summary of Last Lecture: Logspace Computability
- Exercises
- Circuit Value Problem
- The Cook-Levin Theorem

Completeness

Definition

a set $A \subseteq \Sigma^{*}$ is $\leqslant_{m}^{\log }$-hard for a complexity class \mathcal{C} if

- $\forall B \in \mathcal{C}$ we have $B \leqslant{ }_{m}^{\log } A$

Definition

a set $A \subseteq \Sigma^{*}$ is complete for \mathcal{C} with respect to $\leqslant_{m}^{\log }$ if
$1 A$ is $\leqslant{ }_{m}^{\log }$-hard for \mathcal{C}
$2 A \in \mathcal{C}$

Definition

- given a directed graph $G=(V, E)$ and nodes $s, t \in V$
- determine whether there is a directed path from s to t in G
- this problem is called MAZE or directed graph reachability

Theorem
MAZE is $\leqslant{ }_{m}^{\log }$-complete for NLOGSPACE

Corollary
MAZE \in LOGSPACE if and only if LOGSPACE $=$ NLOGSPACE

1 Homework 3.3
2 Miscellaneous Exercise 4
3 Miscellaneous Exercise 6
4 Miscellaneous Exercise 8
5 Miscellaneous Exercise 10

The Circuit Value Problem

Definition

 a Boolean circuit is a program that consists of finitely many assignments of form:$$
\begin{array}{lll}
P_{i}:=1 & P_{i}:=P_{j} \wedge P_{k} & P_{i}:=\neg P_{j} \\
P_{i}:=0 & P_{i}:=P_{j} \vee P_{k} &
\end{array}
$$

where $j, k<i$ and every P_{i} is defined at most once the value of circuit is the value of P_{n}, where n is maximal

Definition

the circuit value problem (CVP) is defined as:

- given: Boolean circuit (with several inputs)
- question: what is the value of the circuit?

Theorem

The circuit value problem is $\leqslant_{m}^{\log }$-complete for P

Proof

the proof has two parts
(1) show CVP $\in \mathrm{P}$
(2) show $C V P$ is $\leqslant_{m}^{\text {log }}$-hard for P

Proof (1)
easy

Comments

- we already know that the evaluation of a Boolean formula can be performed in LOGSPACE
- while Boolean formulas are labelled trees, Boolean circuits are labelled dags

Proof (2)

- let $A \in \mathrm{P}$ and $A=\mathrm{L}(M)$
- M deterministic, single-tape polynomial time-bounded with time-bound n^{c}
- Q set of states of M
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$
- encode configurations of M in a finite alphabet Δ

Observations

1 runtime is bounded by n^{c}; memory consumption is bounded by n^{c}
2 represent computation as $\left(n^{c}+1\right) \times\left(n^{c}+1\right)$ matrix with entries in Δ
3 computation can be encoded as local consistency conditions
4 encode these as Boolean circuit

Construction
variables:

$$
P_{i j}^{a} \quad\left(0 \leqslant i, j \leqslant n^{c}, a \in \Gamma\right) \quad Q_{i j}^{q} \quad\left(0 \leqslant i, j \leqslant n^{c}, q \in Q\right)
$$

Local Consistency Conditions

- for $1 \leqslant i \leqslant n^{c}, 0 \leqslant j \leqslant n^{c}, b \in \Gamma$:

$$
\begin{aligned}
P_{i j}^{b}:= & \bigvee_{\delta(p, a)=(q, b, d)}\left(Q_{i-1, j}^{p} \wedge P_{i-1, j}^{b}\right) \vee \\
& \vee\left(P_{i-1, j}^{b} \wedge \bigwedge_{p \in Q} \neg Q_{i-1, j}^{p}\right)
\end{aligned}
$$

- for $1 \leqslant i \leqslant n^{c}, 1 \leqslant j \leqslant n^{c}-1, q \in Q$:

$$
\begin{gathered}
Q_{i j}^{q}:=\bigvee_{\delta(p, a)=(q, b, R)}\left(Q_{i-1, j-1}^{p} \wedge P_{i-1, j-1}^{a}\right) \vee \\
\vee \bigvee_{\delta(p, a)=(q, b, L)}\left(Q_{i-1, j+1}^{p} \wedge P_{i-1, j+1}^{a}\right)
\end{gathered}
$$

Local Consistency Conditions (cont'd)

- for $j=0$:

$$
Q_{i 0}^{q}:=\bigvee_{\delta(p, a)=(q, b, L)}\left(Q_{i-1,1}^{p} \wedge P_{i-1,1}^{a}\right)
$$

- for $j=n^{c}$:

$$
Q_{i n^{c}}^{q}:=\bigvee_{\delta(p, a)=(q, b, R)}\left(Q_{i-1, n^{c}-1}^{p} \wedge P_{i-1, n^{c}-1}^{a}\right)
$$

- encoding of start configuration on $x=a_{1} \ldots a_{n}$:

$$
\begin{array}{ll}
P_{0,0}^{\vdash}:=1 & P_{0, j}^{a_{j}}:=1(1 \leqslant j \leqslant n) \\
P_{0, j}^{\llcorner }:=1\left(n+1 \leqslant j \leqslant n^{c}\right) & Q_{0,0}^{s}:=1
\end{array}
$$

- all other variables are set to false
assume head moves to the left before accepting, acceptance of M on x is given by

$$
Q_{n^{c}, 0}^{\mathrm{t}} \vee Q_{n^{c}, 1}^{\mathrm{t}}
$$

finally the construction is logspace computable

The Cook-Levin Theorem

Theorem
Boolean satisfiability is $\leqslant m$-complete for NP
Observations

- with SAT the input values are not given, but have to be found
- CVP is defined in terms of circuits
- SAT is defined in terms of formulas
Proof
additional assignments:

$$
P_{i}:=\text { ? }
$$

rest on blackboard

