

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

GM (Institute of Computer Science @ UIBK)

Complexity Theory

1/17

Outline

- Summary of Last Lecture: Logspace Computability
- Exercises
- Circuit Value Problem
- The Cook-Levin Theorem

Completeness

Definition hardness

- a set $A \subseteq \Sigma^*$ is \leq_m^{\log} -hard for a complexity class \mathcal{C} if
 - $\forall B \in \mathcal{C}$ we have $B \leqslant_m^{\log} A$

Definition completeness

- a set $A\subseteq \Sigma^*$ is complete for $\mathcal C$ with respect to \leqslant_m^{\log} if
 - **1** A is \leq_m^{\log} -hard for \mathcal{C}
 - $\mathbf{2}$ $A \in \mathcal{C}$

Definition MAZE

- given a directed graph G = (V, E) and nodes $s, t \in V$
- determine whether there is a directed path from s to t in G
- this problem is called MAZE or directed graph reachability

GM (Institute of Computer Science @ UIBK)

Complexity Theory

9/17

Last Lecture

Theorem

Jones, Lien, and Lasser (1976)

MAZE is \leq_m^{\log} -complete for NLOGSPACE

Corollary

 $\mathsf{MAZE} \in \mathsf{LOGSPACE} \text{ if and only if } \mathsf{LOGSPACE} = \mathsf{NLOGSPACE}$

Homework

- Homework 3.3
- 2 Miscellaneous Exercise 4
- 3 Miscellaneous Exercise 6
- 4 Miscellaneous Exercise 8
- 5 Miscellaneous Exercise 10

GM (Institute of Computer Science @ UIBK)

Complexity Theory

The Circuit Value Problem

Definition Boolean circuit

a Boolean circuit is a program that consists of finitely many assignments of form:

$$P_i := 1$$

$$P_i := P_j \wedge P_k$$

$$P_i := \neg P_i$$

$$P_i := 0$$

$$P_i := 1$$
 $P_i := P_j \wedge P_k$
 $P_i := 0$ $P_i := P_j \vee P_k$

where j, k < i and every P_i is defined at most once

the value of circuit is the value of P_n , where n is maximal

Definition CVP

the circuit value problem (CVP) is defined as:

- given: Boolean circuit (with several inputs)
- question: what is the value of the circuit?

Theorem

The circuit value problem is \leq_m^{\log} -complete for P

Proof

the proof has two parts

- ① show $CVP \in P$
- 2 show *CVP* is \leq_m^{\log} -hard for P

Proof ①

easy

Comments

- we already know that the evaluation of a Boolean formula can be performed in LOGSPACE
- while Boolean formulas are labelled trees, Boolean circuits are labelled dags

GM (Institute of Computer Science @ UIBK)

Complexity Theory

13/17

Circuit Value Problem

Proof ②

- let $A \in P$ and A = L(M)
- M deterministic, single-tape polynomial time-bounded with time-bound n^c
- Q set of states of M
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- encode configurations of M in a finite alphabet Δ

Observations

- 11 runtime is bounded by n^c ; memory consumption is bounded by n^c
- 2 represent computation as $(n^c + 1) \times (n^c + 1)$ matrix with entries in Δ
- 3 computation can be encoded as local consistency conditions
- 4 encode these as Boolean circuit

Construction

variables:

$$P^{a}_{ij} \quad (0 \leqslant i, j \leqslant n^{c}, a \in \Gamma)$$
 $Q^{q}_{ij} \quad (0 \leqslant i, j \leqslant n^{c}, q \in Q)$

Local Consistency Conditions

• for $1 \le i \le n^c$, $0 \le i \le n^c$, $b \in \Gamma$:

$$P_{ij}^{b} := \bigvee_{\delta(p,a)=(q,b,d)} (Q_{i-1,j}^{p} \wedge P_{i-1,j}^{b}) \vee (P_{i-1,j}^{b} \wedge \bigwedge_{p \in Q} \neg Q_{i-1,j}^{p})$$

• for $1 \leqslant i \leqslant n^c$, $1 \leqslant j \leqslant n^c - 1$, $q \in Q$:

$$Q_{ij}^{q} := \bigvee_{\delta(p,a)=(q,b,R)} (Q_{i-1,j-1}^{p} \wedge P_{i-1,j-1}^{a}) \vee \bigvee_{\delta(p,a)=(q,b,L)} (Q_{i-1,j+1}^{p} \wedge P_{i-1,j+1}^{a})$$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

15/17

Circuit Value Problen

Local Consistency Conditions (cont'd)

• for j = 0:

$$Q_{i0}^{\mathbf{q}} := \bigvee_{\delta(\mathbf{p},\mathbf{a})=(\mathbf{q},\mathbf{b},L)} (Q_{i-1,1}^{\mathbf{p}} \wedge P_{i-1,1}^{\mathbf{a}})$$

• for $j = n^c$:

$$Q_{in^c}^q := \bigvee_{\delta(p,a)=(q,b,R)} (Q_{i-1,n^c-1}^p \wedge P_{i-1,n^c-1}^a)$$

• encoding of start configuration on $x = a_1 \dots a_n$:

$$P_{0,0}^{\vdash} := 1$$
 $P_{0,j}^{a_j} := 1 \ (1 \leqslant j \leqslant n)$ $P_{0,j}^{\sqcup} := 1 \ (n+1 \leqslant j \leqslant n^c)$ $Q_{0,0}^{s} := 1$

all other variables are set to false

assume head moves to the left before accepting, acceptance of M on x is given by

$$Q_{n^c,0}^{\mathsf{t}} \vee Q_{n^c,1}^{\mathsf{t}}$$

finally the construction is logspace computable

GM (Institute of Computer Science @ UIBK)

Complexity Theory

The Cook-Levin Theorem

Theorem

Boolean satisfiability is \leq_m^{\log} -complete for NP

Observations

- with SAT the input values are not given, but have to be found
- CVP is defined in terms of circuits
- SAT is defined in terms of formulas

Proof

additional assignments:

$$P_i := ?$$

rest on blackboard

GM (Institute of Computer Science @ UIBK)

Complexity Theory

17/17