

ixercises	Circuit Value Problem
Homework	The Circuit Value Problem Definition Boolean circuit Boolean circuit is a program that consists of finitely many assignments of form:
1 Homework 3.3	$P_i := 1 \qquad P_i := P_j \wedge P_k \qquad P_i := \neg P_j$ $P_i := 0 \qquad P_i := P_j \vee P_k$
2 Miscellaneous Exercise 4	where $j, k < i$ and every P_i is defined at most once
3 Miscellaneous Exercise 6	the value of circuit is the value of P_n , where <i>n</i> is maximal
 4 Miscellaneous Exercise 8 5 Miscellaneous Exercise 10 	DefinitionCVPthe circuit value problem (CVP) is defined as:• given: Boolean circuit (with several inputs)• question: what is the value of the circuit?
	Theorem The circuit value problem is \leq_m^{\log} -complete for P
M (Institute of Computer Science @ UIBK) Complexity Theory 11/17 ircuit Value Problem	GM (Institute of Computer Science @ UIBK) Complexity Theory 12/17 Circuit Value Problem
Proof the proof has two parts 1 show $CVP \in P$ 2 show CVP is \leq_m^{\log} -hard for P Proof 1 easy	 Proof ② let A ∈ P and A = L(M) M deterministic, single-tape polynomial time-bounded with time-bound n^c Q set of states of M δ: Q × Γ → Q × Γ × {L, R} encode configurations of M in a finite alphabet Δ
 Comments we already know that the evaluation of a Boolean formula can be performed in LOGSPACE while Boolean formulas are labelled trees, Boolean circuits are labelled dags 	 Observations 1 runtime is bounded by n^c; memory consumption is bounded by n^c 2 represent computation as (n^c + 1) × (n^c + 1) matrix with entries in Δ 3 computation can be encoded as local consistency conditions 4 encode these as Boolean circuit
M (Institute of Computer Science @ UIBK) Complexity Theory 13/17	GM (Institute of Computer Science @ UIBK) Complexity Theory 14/17

Circuit Value Problem Construction variables:

$$P^{a}_{ij} \quad (0 \leqslant i, j \leqslant n^{c}, a \in \Gamma) \qquad \qquad Q^{q}_{ij} \quad (0 \leqslant i, j \leqslant n^{c}, q \in Q)$$

Local Consistency Conditions

• for
$$1 \leq i \leq n^c$$
, $0 \leq j \leq n^c$, $b \in \Gamma$:

$$P_{ij}^b := \bigvee_{\substack{\delta(p,a) = (q,b,d) \\ \forall (P_{i-1,j}^b \land \bigwedge_{p \in Q} \neg Q_{i-1,j}^p)} (Q_{i-1,j}^p) \lor$$

• for
$$1 \leq i \leq n^c$$
, $1 \leq j \leq n^c - 1$, $q \in Q$:

$$Q_{ij}^q := \bigvee_{\substack{\delta(p,a) = (q,b,R) \\ \forall \\ \delta(p,a) = (q,b,L)}} (Q_{i-1,j-1}^p \wedge P_{i-1,j-1}^a) \lor$$

Local Consistency Conditions (cont'd)

• for
$$j = 0$$
:
 $Q_{i0}^{q} := \bigvee_{\delta(p,a) = (q,b,L)} (Q_{i-1,1}^{p} \wedge P_{i-1,1}^{a})$

for
$$j = n^c$$
:

$$Q_{in^c}^q := \bigvee_{\delta(p,a)=(q,b,R)} (Q_{i-1,n^c-1}^p \wedge P_{i-1,n^c-1}^a)$$

• encoding of start configuration on $x = a_1 \dots a_n$:

$$P_{0,0}^{\vdash} := 1 \qquad P_{0,j}^{a_j} := 1 \ (1 \le j \le n)$$

$$P_{0,j}^{\sqcup} := 1 \ (n+1 \le j \le n^c) \qquad Q_{0,0}^{s} := 1$$

• all other variables are set to false

GM (Institute of Computer Science @ UIBK)

assume head moves to the left before accepting, acceptance of M on x is given by

 $Q_{\mathbf{n^{c}},\mathbf{0}}^{\mathrm{t}} \vee Q_{\mathbf{n^{c}},\mathbf{1}}^{\mathrm{t}}$

Complexity Theory

16/17

finally the construction is logspace computable

The Cook-Levin Theorem

GM (Institute of Computer Science @ UIBK)

The Cook-Levin Theorem

Theorem

Boolean satisfiability is \leq_m^{\log} -complete for NP

Observations

• with SAT the input values are not given, but have to be found

Complexity Theor

- CVP is defined in terms of circuits
- SAT is defined in terms of formulas

Proof

additional assignments:

rest on blackboard

GM (Institute of Computer Science @ UIBK)

Complexity Theory

 $P_i := ?$