

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

GM (Institute of Computer Science @ UIBK)

Complexity Theory

1/10

Outline

- Summary of Last Lecture: The Circuit Value Problem
- Exercises
- Monotone Inductive Definitions
- Alternating Turing Machines
- Alternating Complexity Classes

The Circuit Value Problem

Definition Boolean circuit

a Boolean circuit is a program that consists of finitely many assignments of form:

$$P_i := 1$$

$$P_i := P_i \wedge P_k$$

$$P_i := \neg P_i$$

$$P_i := 0$$

$$P_i := 1$$
 $P_i := P_j \wedge P_k$ $P_i := \neg P_j$
 $P_i := 0$ $P_i := P_j \vee P_k$

where j, k < i and every P_i is defined at most once

the value of circuit is the value of P_n , where n is maximal

Definition CVP

the circuit value problem (CVP) is defined as:

- given: Boolean circuit (with several inputs)
- question: what is the value of the circuit?

GM (Institute of Computer Science @ UIBK)

Complexity Theory

The Cook-Levin Theorem

Theorem

The circuit value problem is \leq_m^{\log} -complete for P

Theorem

Boolean satisfiability is \leq_m^{\log} -complete for NP

Observations

- with SAT the input values are not given, but have to be found
- CVP is defined in terms of circuits
- SAT is defined in terms of formulas

Homework

- Miscellaneous Exercise 11
- 2 Miscellaneous Exercise 12
- 3 Miscellaneous Exercise 14
- 4 Miscellaneous Exercise 15
- 5 Miscellaneous Exercise 16

GM (Institute of Computer Science @ UIBK)

Complexity Theory

11/19

Monotone Inductive Definitions

Definition

complete lattices

- a complete lattice is
 - $\mathbf{1}$ a set U and

such that any subset A of U has a least upper bound (denoted as $\sup A$)

Definition

operator

- an operator on a complete lattice U is a function $\tau \colon U \to U$
- an operator is monotone if

$$x \leqslant y \implies \tau(x) \leqslant \tau(y)$$

an operator is chain-continuous if ∀A

$$\tau(\sup A) = \sup_{x \in A} \tau(x)$$

where A is a chain in U, i.e., a totally ordered subset of U

• if $U = 2^X$ ordered by \subseteq ; operator τ is also called set operator

Definition fixpoint

• a prefixpoint of an operator τ on a complete lattice U is $x \in U$ such that $\tau(x) \leqslant x$

- a fixpoint of τ on U is $x \in U$ such that $\tau(x) = x$
- for set operators $\tau \colon 2^X \to 2^X$ a subset $A \subseteq X$ is called closed if A is a prefixpoint

Definition $au^\dagger(\cdot)$

let

$$PF_{\tau}(x) = \{ y \in U \mid \tau(y) \leqslant y \land x \leqslant y \}$$

denote the set of all prefixpoints of τ above x; define $\tau^{\dagger}(x) = \inf PF_{\tau}(x)$

Lemma

any monotone operator τ has a \leq -least fixpoint, namely $\tau^{\dagger}(\bot)$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

13/19

closure operator

Monotone Inductive Definitions

Definition

an operator τ is a closure operator if

- $\mathbf{1}$ τ is monotone
- $\forall x x \leqslant \tau(x)$
- $\exists \forall x \ \tau(\tau(x)) = \tau(x)$

Lemma

for any monotone operator τ , the operator τ^{\dagger} is a closure operator

Definition $\tau^i(\cdot)$

let au be a monotone operator on U

$$\tau^{0}(x) = \bot \qquad \qquad \tau^{\omega}(x) = \sup_{i < \lambda} \tau^{i}(x)$$

$$\tau^{i+1}(x) = \sup\{x, \tau(\tau^{\alpha}(x))\}\$$

Theorem Knaster-Tarski

for a monotone and chain-continuous operator we have

$$au^{\dagger}(x) = au^*(x) := \sup_{lpha \leqslant \omega} au^{lpha}(x)$$

GM (Institute of Computer Science @ UIBK)

Definition **ATM**

 an alternating Turing machine is defined like a nondeterministic Turing machine, but includes a function

type:
$$Q \rightarrow \{\land, \lor, \lnot\}$$

- a configuration is called ∧-, ∨-, or ¬-configuration, depending on the type of its state
- all ¬-configurations have exactly one successor
- accept and reject states are formalised implicitly

Definition

three valued logic

we write **b** for the truth value "don't know"

1	V	1	\perp	0
1	1	1	1	1
724		1	L	
	0	1	\perp	0

\land	1	T	0
1	1		0
	上		0
0	0	0	0

\neg		
1	0	
	L	
0	1	

is supremum and \wedge is infimum in order $0 \leqslant \bot \leqslant 1$

GM (Institute of Computer Science @ UIBK) Complexity Theory

Definition

information order

the information order is defined as $\bot \sqsubseteq 0$, $\bot \sqsubseteq 1$

Definition labeling ℓ

let $\mathcal C$ a set of configuration, a labeling is a map $\ell\colon\mathcal C\to\{0,1,\bot\}$; we define $\ell \sqsubseteq \ell' : \iff \forall \alpha \in \mathcal{C} \ \ell(\alpha) \sqsubseteq \ell'(\alpha)$

Lemma

the set of labelings together with \sqsubseteq form a complete lattice, i.e., every set of labelings has a supremum

Definition au

we define an operator on labels

$$\boldsymbol{\tau}(\ell)(\alpha) := \begin{cases} \bigwedge_{\alpha \to \beta} \ell(\beta) & \alpha \text{ an } \land\text{-configuration} \\ \bigvee_{\alpha \to \beta} \ell(\beta) & \alpha \text{ an } \lor\text{-configuration} \\ \neg \ell(\beta) & \alpha \text{ a } \neg\text{-configuration and } \alpha \to \beta \end{cases}$$

define ℓ_* as the \sqsubseteq -least fixpoint of τ

Observation

the labeling ℓ_* is the supremum of the chain

$$\ell_0 \sqsubseteq \ell_1 \sqsubseteq \ell_2 \sqsubseteq \dots$$

where $\ell_0 := \lambda \alpha. \perp$ and $\ell_{i+1} := \tau(\ell_i)$

Definition

an ATM accepts its input x if

• $\ell_*(\text{start}) = 1$

it rejects if $\ell_*(\text{start}) = 0$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

17/19

Alternating Turing Machines

Lemma

every ATM with negations can be simulated by an ATM without negations at no extra cost (in space or time)

Definition dual ATM

the dual of an ATM M is the alternating TM M', defined as M but with exchanged \land - and \lor -states

Proof

- let M be an ATM and M' its dual
- $\forall \alpha, \alpha' \ \forall i \ \ell_i(\alpha) = \neg \ell'_i(\alpha')$, hence $\ell_*(\alpha) = \neg \ell'_*(\alpha')$
- form M'' as the (disjoint) union of M and M'
- ∀ p ¬-state

$$\forall ((p, a), (q, b, d))$$
 transition of M
 $\forall ((p', a), (q', b, d))$ transition of M'

make p and \wedge -state and p' an \vee -state

$$((p,a),(q,b,d))\mapsto ((p,a),(q',b,d))$$

 $((p',a),(q',b,d))\mapsto ((p',a),(q,b,d))$

Alternating Complexity Classes

Definition

```
ALOGSPACE := ASPACE(log n) APTIME := ATIME(n^{O(1)})
```

 $\mathsf{APSPACE} := \mathsf{ATIME}(n^{\mathsf{O}(1)}) \qquad \mathsf{AEXPTIME} := \mathsf{ATIME}(2^{n^{\mathsf{O}(1)}})$

Theorem

let $T(n) \geqslant n$ and $S(n) \geqslant \log n$

- **11** ATIME(T(n)) \subseteq DSPACE(T(n))
- **3** ASPACE(S(n)) \subseteq DTIME($2^{O(S(n))}$)

Corollary

```
for T(n) \ge n and S(n) \ge \log n: ATIME(T(n)^{O(1)}) = DSPACE(T(n)^{O(1)}) and ASPACE(S(n)) = DTIME(S(n))
```

GM (Institute of Computer Science @ UIBK)

Complexity Theory

19/19