

GM (Institute of Computer Science @ UIBK)

ixercises	Monotone Inductive Definitions					
Homework	Definitioncomplete latticesa complete lattice isII a set U and2 a partial order \leq (defined on U)such that any subset A of U has a least upper bound (denoted as sup A)					
 Miscellaneous Exercise 12 Miscellaneous Exercise 14 Miscellaneous Exercise 15 Miscellaneous Exercise 16 	Definition operator • an operator on a complete lattice U is a function $\tau: U \to U$ • an operator is monotone if $x \leq y \implies \tau(x) \leq \tau(y)$ • an operator is chain-continuous if $\forall A$ $\tau(\sup A) = \sup_{x \in A} \tau(x)$ where A is a chain in U , i.e., a totally ordered subset of U					
SM (Institute of Computer Science @ UIBK) Complexity Theory 11/19 Monotone Inductive Definitions 11/19	• if $U = 2^{\circ}$ ordered by \subseteq ; operator τ is also called set operator GM (Institute of Computer Science @ UIBK) Complexity Theory 12/2 Monotone Inductive Definitions					
 Definition fixpoint a prefixpoint of an operator τ on a complete lattice U is x ∈ U such that τ(x) ≤ x a fixpoint of τ on U is x ∈ U such that τ(x) = x for set operators τ: 2^X → 2^X a subset A ⊆ X is called closed if A is a prefixpoint 	Definitionclosure operatoran operator τ is a closure operator if11 τ is monotone2 $\forall x x \leq \tau(x)$ 3 $\forall x \tau(\tau(x)) = \tau(x)$ Lemmafor any monotone operator τ , the operator τ^{\dagger} is a closure operator					
Definition let $PF_{\tau}(x) = \{y \in U \mid \tau(y) \leq y \land x \leq y\}$ denote the set of all prefixpoints of τ above x ; define $\tau^{\dagger}(x) = \inf PF_{\tau}(x)$ Lemma	Definition $\tau^i(\cdot)$ let τ be a monotone operator on U $\tau^0(x) = \bot$ $\tau^0(x) = \bot$ $\tau^{\omega}(x) = \sup_{i < \lambda} \tau^i(x)$ $\tau^{i+1}(x) = \sup\{x, \tau(\tau^{\alpha}(x))\}$ Knaster-TarskTheoremKnaster-Tarskfor a monotone and chain-continuous operator we have					
any monotone operator $ au$ has a \leqslant -least fixpoint, namely $ au^\dagger(ot)$	$ au^{\dagger}(x) = au^{*}(x) := \sup_{\alpha \leqslant \omega} au^{lpha}(x)$					

Alternating Turing Machines

Definition

• an alternating Turing machine is defined like a nondeterministic Turing machine, but includes a function

type: $Q \to \{\land, \lor, \neg\}$

- a configuration is called ∧-, ∨-, or ¬-configuration, depending on the type of its state
- all ¬-configurations have exactly one successor
- accept and reject states are formalised implicitly

Definition

three valued logic

ATM

we write 1 for the truth value "don't know"

Ų,	V	1	\perp	0]	\wedge	1	\perp	0	_	
N	1	1	1	1		1	1		0	1	0
	L.	1			1	\perp			0	\bot	
SI.	0	1	\perp	0		0	0	0	0	0	1

 \lor is supremum and \land is infimum in order $0 \leqslant \bot \leqslant 1$

GM (Institute of Computer Science @ UIBK) Complexity Theory Alternating Turing Machines

Observation

the labeling ℓ_\ast is the supremum of the chain

 $\ell_0 \sqsubseteq \ell_1 \sqsubseteq \ell_2 \sqsubseteq \dots$

where $\ell_0 := \lambda \alpha . \bot$ and $\ell_{i+1} := \tau(\ell_i)$

Definition an ATM accepts its input x if • $\ell_*(\text{start}) = 1$

it rejects if $\ell_*(\texttt{start}) = 0$

ernating Turing Machines

the information order is defined as $\perp \sqsubseteq 0$, $\perp \sqsubseteq 1$

Definition

Definition

let \mathcal{C} a set of configuration, a labeling is a map $\ell \colon \mathcal{C} \to \{0, 1, \bot\}$; we define

$$\ell \sqsubseteq \ell' : \iff \forall \alpha \in \mathcal{C} \ \ell(\alpha) \sqsubseteq \ell'(\alpha)$$

Lemma

the set of labelings together with \sqsubseteq form a complete lattice, i.e., every set of labelings has a supremum

Definition

we define an operator on labels

$$\tau(\ell)(\alpha) := \begin{cases} \bigwedge_{\alpha \to \beta} \ell(\beta) & \alpha \text{ an } \wedge \text{-configuration} \\ \bigvee_{\alpha \to \beta} \ell(\beta) & \alpha \text{ an } \vee \text{-configuration} \\ \neg \ell(\beta) & \alpha \text{ a } \neg \text{-configuration and } \alpha \to \beta \end{cases}$$

define ℓ_{*} as the $\sqsubseteq-\text{least}$ fixpoint of τ

Alternating Turing Machines

GM (Institute of Computer Science @ UIBK)

Lemma

every ATM with negations can be simulated by an ATM without negations at no extra cost (in space or time)

Definition

the dual of an ATM *M* is the alternating TM *M'*, defined as *M* but with exchanged \land - and \lor -states

Proof

- let *M* be an ATM and *M'* its dual
- $\forall \alpha, \alpha' \forall i \ \ell_i(\alpha) = \neg \ell'_i(\alpha')$, hence $\ell_*(\alpha) = \neg \ell'_*(\alpha')$
- form M'' as the (disjoint) union of M and M'

∀ *p* ¬-state

 $\forall ((p, a), (q, b, d))$ transition of M

 \forall ((p', a), (q', b, d)) transition of M'

make p and \wedge -state and p' an \lor -state

 $((p,a),(q,b,d))\mapsto ((p,a),(q',b,d)) \ ((p',a),(q',b,d))\mapsto ((p',a),(q,b,d))$

Complexity Theory

information order

labeling ℓ

 τ

dual ATM

```
Atternating Complexity Classes

Definition

ALOGSPACE := ASPACE(log n) APTIME := ATIME(n^{O(1)})

APSPACE := ATIME(n^{O(1)}) AEXPTIME := ATIME(2^{n^{O(1)}})

Theorem

let T(n) \ge n and S(n) \ge \log n

I ATIME(T(n)) \subseteq DSPACE(T(n))

I DSPACE(S(n)) \subseteq ATIME(S(n)^2)

ASPACE(S(n)) \subseteq DTIME(2^{O(S(n))})

ASPACE(S(n)) \subseteq ASPACE(log T(n))

Corollary

for T(n) \ge n and S(n) \ge \log n: ATIME(T(n)^{O(1)}) = DSPACE(T(n)^{O(1)})

and ASPACE(S(n)) = DTIME(2^{O(S(n))})
```

Complexity Theory

GM (Institute of Computer Science @ UIBK)