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Last Lecture

The Circuit Value Problem

Definition Boolean circuit
a Boolean circuit is a program that consists of finitely many assignments of
form:

Pi := 1 Pi := Pj ∧ Pk Pi := ¬Pj

Pi := 0 Pi := Pj ∨ Pk

where j , k < i and every Pi is defined at most once

the value of circuit is the value of Pn, where n is maximal

Definition CVP
the circuit value problem (CVP) is defined as:

• given: Boolean circuit (with several inputs)

• question: what is the value of the circuit?
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Last Lecture

The Cook-Levin Theorem

Theorem
The circuit value problem is 6log

m -complete for P

Theorem
Boolean satisfiability is 6log

m -complete for NP

Observations
• with SAT the input values are not given, but have to be found

• CVP is defined in terms of circuits

• SAT is defined in terms of formulas
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Exercises

Homework

1 Miscellaneous Exercise 11

2 Miscellaneous Exercise 12

3 Miscellaneous Exercise 14

4 Miscellaneous Exercise 15

5 Miscellaneous Exercise 16
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Monotone Inductive Definitions

Definition complete lattices
a complete lattice is

1 a set U and

2 a partial order 6 (defined on U)

such that any subset A of U has a least upper bound (denoted as sup A)

Definition operator

• an operator on a complete lattice U is a function τ : U → U

• an operator is monotone if

x 6 y =⇒ τ(x) 6 τ(y)

• an operator is chain-continuous if ∀A

τ(supA) = supx∈A τ(x)

where A is a chain in U, i.e., a totally ordered subset of U

• if U = 2X ordered by ⊆; operator τ is also called set operator
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Monotone Inductive Definitions

Definition fixpoint

• a prefixpoint of an operator τ on a complete lattice U is
x ∈ U such that τ(x) 6 x

• a fixpoint of τ on U is x ∈ U such that τ(x) = x

• for set operators τ : 2X → 2X a subset A ⊆ X is
called closed if A is a prefixpoint

Definition τ †(·)
let

PFτ (x) = {y ∈ U | τ(y) 6 y ∧ x 6 y}

denote the set of all prefixpoints of τ above x ; define τ †(x) = inf PFτ (x)

Lemma
any monotone operator τ has a 6-least fixpoint, namely τ †(⊥)
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Monotone Inductive Definitions

Definition closure operator
an operator τ is a closure operator if

1 τ is monotone
2 ∀ x x 6 τ(x)
3 ∀ x τ(τ(x)) = τ(x)

Lemma
for any monotone operator τ , the operator τ † is a closure operator

Definition τ i (·)
let τ be a monotone operator on U

τ0(x) = ⊥ τω(x) = sup
i<λ

τ i (x)

τ i+1(x) = sup{x , τ(τα(x))}

Theorem Knaster-Tarski
for a monotone and chain-continuous operator we have

τ †(x) = τ∗(x) := sup
α6ω

τα(x)
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Alternating Turing Machines

Definition ATM

• an alternating Turing machine is defined like a nondeterministic
Turing machine, but includes a function

type : Q → {∧,∨,¬}

• a configuration is called ∧-, ∨-, or ¬-configuration,
depending on the type of its state

• all ¬-configurations have exactly one successor

• accept and reject states are formalised implicitly

Definition three valued logic
we write ⊥ for the truth value “don’t know”

∨ 1 ⊥ 0

1 1 1 1
⊥ 1 ⊥ ⊥
0 1 ⊥ 0

∧ 1 ⊥ 0

1 1 ⊥ 0
⊥ ⊥ ⊥ 0
0 0 0 0

¬
1 0
⊥ ⊥
0 1

∨ is supremum and ∧ is infimum in order 0 6 ⊥ 6 1
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Alternating Turing Machines

Definition information order
the information order is defined as ⊥ v 0, ⊥ v 1

Definition labeling `
let C a set of configuration, a labeling is a map ` : C → {0, 1,⊥}; we define

` v `′ :⇐⇒ ∀α ∈ C `(α) v `′(α)

Lemma
the set of labelings together with v form a complete lattice, i.e., every set
of labelings has a supremum

Definition τ
we define an operator on labels

τ(`)(α) :=


∧

α→β `(β) α an ∧-configuration∨
α→β `(β) α an ∨-configuration

¬`(β) α a ¬-configuration and α → β

define `∗ as the v-least fixpoint of τ
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Alternating Turing Machines

Observation
the labeling `∗ is the supremum of the chain

`0 v `1 v `2 v . . .

where `0 := λα.⊥ and `i+1 := τ(`i )

Definition
an ATM accepts its input x if

• `∗(start) = 1

it rejects if `∗(start) = 0
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Alternating Turing Machines

Lemma
every ATM with negations can be simulated by an ATM without negations
at no extra cost (in space or time)

Definition dual ATM
the dual of an ATM M is the alternating TM M ′, defined as M but with
exchanged ∧- and ∨-states

Proof
• let M be an ATM and M ′ its dual
• ∀ α, α′ ∀ i `i (α) = ¬`′i (α

′), hence `∗(α) = ¬`′∗(α
′)

• form M ′′ as the (disjoint) union of M and M ′

• ∀ p ¬-state
∀ ((p, a), (q, b, d)) transition of M
∀ ((p′, a), (q′, b, d)) transition of M ′

make p and ∧-state and p′ an ∨-state

((p, a), (q, b, d)) 7→ ((p, a), (q′, b, d))

((p′, a), (q′, b, d)) 7→ ((p′, a), (q, b, d))
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Alternating Complexity Classes

Alternating Complexity Classes

Definition

ALOGSPACE := ASPACE(log n) APTIME := ATIME(nO(1))

APSPACE := ATIME(nO(1)) AEXPTIME := ATIME(2nO(1)
)

Theorem
let T (n) > n and S(n) > log n

1 ATIME(T (n)) ⊆ DSPACE(T (n))

2 DSPACE(S(n)) ⊆ ATIME(S(n)2)

3 ASPACE(S(n)) ⊆ DTIME(2O(S(n)))

4 DTIME(T (n)) ⊆ ASPACE(log T (n))

Corollary
for T (n) > n and S(n) > log n: ATIME(T (n)O(1)) = DSPACE(T (n)O(1))
and ASPACE(S(n)) = DTIME(2O(S(n)))
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