

Definition

• an alternating Turing machine is defined like a nondeterministic Turing machine, but includes a function

type:
$$Q o \{ \land, \lor, \lnot \}$$

- a configuration is called ∧-, ∨-, or ¬-configuration, depending on the type of its state
- all ¬-configurations have exactly one successor
- accept and reject states are formalised implicitly

Definition

we write \perp for the truth value "don't know"

V	1	\perp	0
121	1	1	1
E LA	1	\bot	\perp
0	1		0

\wedge	1		(
1	1		(
			(
0	0	0	(

1	0
\perp	
0	1

9/15

ATM

three valued logic

information order

labeling ℓ

Definition

GM (Institute of Computer Science @ UIBK)

the information order is defined as $\perp \sqsubseteq 0$, $\perp \sqsubseteq 1$

Definition

let C a set of configuration, a labeling is a map $\ell : C \to \{0, 1, \bot\}$; we define

Complexity Theory

 $\ell \sqsubseteq \ell' : \iff \forall \alpha \in \mathcal{C} \ \ell(\alpha) \sqsubseteq \ell'(\alpha)$

Lemma

the set of labelings together with \sqsubseteq form a complete lattice, i.e., every set of labelings has a supremum

Definition

we define an operator on labels

$$\tau(\ell)(\alpha) := \begin{cases} \bigwedge_{\alpha \to \beta} \ell(\beta) & \alpha \text{ an } \wedge\text{-configuration} \\ \bigvee_{\alpha \to \beta} \ell(\beta) & \alpha \text{ an } \vee\text{-configuration} \\ \neg \ell(\beta) & \alpha \text{ a } \neg\text{-configuration and } \alpha \to \beta \end{cases}$$

define ℓ_* as the \sqsubseteq -least fixpoint of τ

au

Alternating Complexity Classes

Definition

the quantified Boolean formula problem is the problem of determining the truth of

 $\mathbf{Q}_1 x_1 \mathbf{Q}_2 x_2 \dots \mathbf{Q}_n x_n B(x_1, \dots, x_n)$

 $B(x_1, \ldots, x_n)$ is a Boolean formula, $Q_i \in \{\forall, \exists\}$ with quantification over $\{0, 1\}$

Observation

• $\exists x_1 \dots \exists x_n B(x_1, \dots, x_n)$ -QBF = SAT • $\forall x_1 \dots \forall x_n B(x_1, \dots, x_n)$ -QBF = VALIDITY

Theorem QBF is \leq_m^{\log} -complete for PSPACE

GM (Institute of Computer Science @ UIBK) Complexity of Games

Definition

a 2-person perfect information game is a graph G = (BOARDS, MOVE)and a start state $s \in BOARDS$

Complexity Theory

- BOARDS defines the play field
- MOVE specifies the legal actions
- players alternate, Player I starts in s
- Player I chooses $s_1 \in BOARDS$, such that $MOVE(s, s_1)$
- Player II chooses $s_2 \in \mathsf{BOARDS}$, such that $\mathsf{MOVE}(s_1, s_2) \ldots$
- a player wins, if the other cannot make a move

Definition

- CHECKMATE(y) : $\Leftrightarrow \forall z \neg MOVE(y, z)$
- WIN(x) $\Leftrightarrow \exists MOVE(x, y) \land$ (CHECKMATE(y) $\lor \forall z (MOVE(y, z) \rightarrow WIN(z)))$
- for $x \in BOARDS \land WIN(x)$, x is forced win

QBF

13/15

information game

Observation monotone operator can be simplified $WIN(x) \Leftrightarrow \exists MOVE(x, y) \land \forall z (MOVE(y, z) \rightarrow WIN(z))$ Definition generalised geography a triple (C, E, s) is called a generalised geography game if • (C, E) directed graph • *s* ∈ *C* • Player I starts in $s = s_0$ and moves in even states from s_{2i} to adjacent vertex s_{2i+1} • Player II moves from s_{2i+1} to s_{2i+2} vertices must not be revisited Theorem Generalised geography is \leq_m^{\log} -complete for PSPACE GM (Institute of Computer Science @ UIBK) Complexity Theory 15/15