

Outline

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

 Summary of Last Lecture: Alternating Turing Machines Exercises

- Quantified Boolean Formula Problem
- Complexity of Games

information order

Definition

• an alternating Turing machine is defined like a nondeterministic Turing machine, but includes a function

type:
$$Q \rightarrow \{\land, \lor, \neg\}$$

- a configuration is called ∧-, ∨-, or ¬-configuration, depending on the type of its state
- all ¬-configurations have exactly one successor
- accept and reject states are formalised implicitly

Definition three valued logic

we write \(\preceq \) for the truth value "don't know"

V	1	\perp	0
1	1	1	1
	1	\perp	\perp
0	1	\perp	0

\land	1	\perp	0
1	1	\perp	0
\Box	上	\perp	0
0	0	0	0

٦	
1	0
\perp	T
0	1

Definition

ATM

the information order is defined as $\bot \sqsubseteq 0$, $\bot \sqsubseteq 1$

Definition

labeling ℓ

let \mathcal{C} a set of configuration, a labeling is a map $\ell \colon \mathcal{C} \to \{0,1,\perp\}$; we define $\ell \sqsubseteq \ell' : \iff \forall \alpha \in \mathcal{C} \ \ell(\alpha) \sqsubseteq \ell'(\alpha)$

the set of labelings together with

☐ form a complete lattice, i.e., every set of labelings has a supremum

Definition

we define an operator on labels

$$\boldsymbol{\tau}(\ell)(\alpha) := \begin{cases} \bigwedge_{\alpha \to \beta} \ell(\beta) & \alpha \text{ an } \land\text{-configuration} \\ \bigvee_{\alpha \to \beta} \ell(\beta) & \alpha \text{ an } \lor\text{-configuration} \\ \neg \ell(\beta) & \alpha \text{ a } \neg\text{-configuration and } \alpha \to \beta \end{cases}$$

define ℓ_* as the \sqsubseteq -least fixpoint of τ

Alternating Complexity Classes

Definition

ALOGSPACE := ASPACE(log n) APTIME := ATIME($n^{O(1)}$)

APSPACE := ATIME($n^{O(1)}$) AEXPTIME := ATIME($2^{n^{O(1)}}$)

Theorem

let $T(n) \ge n$ and $S(n) \ge \log n$

- 1 ATIME(T(n)) \subseteq DSPACE(T(n))
- **3** ASPACE(S(n)) \subseteq DTIME($2^{O(S(n))}$)

Corollary

for $T(n) \ge n$ and $S(n) \ge \log n$: ATIME $(T(n)^{O(1)}) = \mathsf{DSPACE}(T(n)^{O(1)})$ and ASPACE $(S(n)) = \mathsf{DTIME}(2^{O(S(n))})$

GM (Institute of Computer Science @ UIB

Complexity Theory

11/15

QBF

GM (Institute of Computer Science @ UIBP

Complexity Theor

12/15

Complexity of Game

Definition

the quantified Boolean formula problem is the problem of determining the truth of

$$Q_1x_1Q_2x_2...Q_nx_nB(x_1,...,x_n)$$

 $B(x_1,\ldots,x_n)$ is a Boolean formula, $Q_i\in\{\forall,\exists\}$ with quantification over $\{0,1\}$

Observation

- $\exists x_1 \dots \exists x_n B(x_1, \dots, x_n)$ -QBF = SAT
- $\forall x_1 \dots \forall x_n B(x_1, \dots, x_n)$ -QBF = VALIDITY

Theorem

QBF is \leq_m^{\log} -complete for PSPACE

Homework

- **1** Extend the definition of complete lattice to a formal one and prove that for a complete lattice U, for any $A \subseteq U$, sup A is unique.
- 2 Miscellaneous Exercise 19
- 3 Miscellaneous Exercise 22
- 4 Miscellaneous Exercise 26

Definition

information game

- a 2-person perfect information game is a graph G = (BOARDS, MOVE) and a start state $s \in BOARDS$
 - BOARDS defines the play field
 - MOVE specifies the legal actions
 - players alternate, Player I starts in s
 - Player I chooses $s_1 \in BOARDS$, such that $MOVE(s, s_1)$
 - Player II chooses $s_2 \in \mathsf{BOARDS}$, such that $\mathsf{MOVE}(s_1, s_2) \dots$
 - a player wins, if the other cannot make a move

Definition

- CHECKMATE(y) : $\Leftrightarrow \forall z \neg \mathsf{MOVE}(y, z)$
- WIN(x) $\Leftrightarrow \exists MOVE(x, y) \land (CHECKMATE(y) \lor \forall z(MOVE(y, z) \to WIN(z)))$
- for $x \in BOARDS \land WIN(x)$, x is forced win

Complexity of Gam

Observation

monotone operator can be simplified

$$WIN(x) \Leftrightarrow \exists MOVE(x, y) \land \forall z (MOVE(y, z) \rightarrow WIN(z))$$

Definition

generalised geography

- a triple (C, E, s) is called a generalised geography game if
 - (*C*, *E*) directed graph
 - *s* ∈ *C*
 - Player I starts in $s=s_0$ and moves in even states from s_{2i} to adjacent vertex s_{2i+1}
 - Player II moves from s_{2i+1} to s_{2i+2}
 - vertices must not be revisited

Theorem

Generalised geography is \leq_m^{\log} -complete for PSPACE

GM (Institute of Computer Science @ UIBK)

Complexity Theory

