Outline

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK
Summer 2008

Definition

- an alternating Turing machine is defined like a nondeterministic Turing machine, but includes a function

$$
\text { type: } Q \rightarrow\{\wedge, \vee, \neg\}
$$

- a configuration is called $\wedge-, \vee-$, or \neg-configuration, depending on the type of its state
- all \neg-configurations have exactly one successor
- accept and reject states are formalised implicitly

Definition

we write \perp for the truth value "don't know"

\vee	1	\perp	0
1	1	1	1
\perp	1	\perp	\perp
0	1	\perp	0

\wedge	1	\perp	0
1	1	\perp	0
\perp	\perp	\perp	0
0	0	0	0

Alternating Complexity Classes

Definition

$$
\begin{array}{rlrl}
\operatorname{ALOGSPACE}: & :=\operatorname{ASPACE}(\log n) & \operatorname{APTIME}: & =\operatorname{ATIME}\left(n^{O(1)}\right) \\
\operatorname{APSPACE}: & : \operatorname{ATIME}\left(n^{\mathrm{O}(1)}\right) & \operatorname{AEXPTIME}:=\operatorname{ATIME}\left(2^{n^{\circ(1)}}\right)
\end{array}
$$

Theorem
let $T(n) \geqslant n$ and $S(n) \geqslant \log n$
$1 \operatorname{ATIME}(T(n)) \subseteq \operatorname{DSPACE}(T(n))$
$2 \operatorname{DSPACE}(S(n)) \subseteq \operatorname{ATIME}\left(S(n)^{2}\right)$
$3 \operatorname{ASPACE}(S(n)) \subseteq \operatorname{DTIME}\left(2^{O(S(n))}\right)$
$4 \operatorname{DTIME}(T(n)) \subseteq \operatorname{ASPACE}(\log T(n))$
Corollary
for $T(n) \geqslant n$ and $S(n) \geqslant \log n: \operatorname{ATIME}\left(T(n)^{\mathrm{O}(1)}\right)=\operatorname{DSPACE}\left(T(n)^{\mathrm{O}(1)}\right)$ and $\operatorname{ASPACE}(S(n))=\operatorname{DTIME}\left(2^{\mathrm{O}(S(n))}\right)$

Definition

the quantified Boolean formula problem is the problem of determining the truth of

$$
\mathrm{Q}_{1} x_{1} Q_{2} x_{2} \ldots \mathrm{Q}_{n} x_{n} B\left(x_{1}, \ldots, x_{n}\right)
$$

$B\left(x_{1}, \ldots, x_{n}\right)$ is a Boolean formula, $Q_{i} \in\{\forall, \exists\}$ with quantification over $\{0,1\}$

Observation

- $\exists x_{1} \ldots \exists x_{n} B\left(x_{1}, \ldots, x_{n}\right)$-QBF = SAT
- $\forall x_{1} \ldots \forall x_{n} B\left(x_{1}, \ldots, x_{n}\right)$-QBF $=$ VALIDITY

Theorem

QBF is $\leqslant m$-complete for PSPACE

Homework

1 Extend the definition of complete lattice to a formal one and prove that for a complete lattice U, for any $A \subseteq U$, sup A is unique.

2 Miscellaneous Exercise 19Miscellaneous Exercise 22Miscellaneous Exercise 26

Definition

a 2-person perfect information game is a graph $G=$ (BOARDS, MOVE) and a start state $s \in$ BOARDS

- BOARDS defines the play field
- MOVE specifies the legal actions
- players alternate, Player I starts in s
- Player I chooses $s_{1} \in \operatorname{BOARDS}$, such that $\operatorname{MOVE}\left(s, s_{1}\right)$
- Player II chooses $s_{2} \in \operatorname{BOARDS}$, such that $\operatorname{MOVE}\left(s_{1}, s_{2}\right) \ldots$
- a player wins, if the other cannot make a move

Definition

- $\operatorname{CHECKMATE}(y): \Leftrightarrow \forall z \neg \operatorname{MOVE}(y, z)$
- $\operatorname{WIN}(x) \Leftrightarrow \exists \operatorname{MOVE}(x, y) \wedge$
$(\operatorname{CHECKMATE}(y) \vee \forall z(\operatorname{MOVE}(y, z) \rightarrow \operatorname{WIN}(z)))$
- for $x \in \operatorname{BOARDS} \wedge \operatorname{WIN}(x), x$ is forced win

Observation
monotone operator can be simplified

$$
\operatorname{WIN}(x) \Leftrightarrow \exists \operatorname{MOVE}(x, y) \wedge \forall z(\operatorname{MOVE}(y, z) \rightarrow \operatorname{WIN}(z))
$$

Definition
generalised geography
a triple (C, E, s) is called a generalised geography game if

- (C, E) directed graph
- $s \in C$
- Player I starts in $s=s_{0}$ and moves in even states from $s_{2 i}$ to adjacent vertex $s_{2 i+1}$
- Player II moves from $s_{2 i+1}$ to $s_{2 i+2}$
- vertices must not be revisited

Theorem
Generalised geography is $\leqslant_{m}^{\text {log }}$-complete for PSPACE

