Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

Outline

- Summary of Last Lecture: Problems Complete for PSPACE
- (Old) Exercises
- Definition of PH via ATMs
- Oracle Machines and Relativised Complexity Classes
- Equivalence

Definition

the quantified Boolean formula problem is the problem of determining the truth of

$$
Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} B\left(x_{1}, \ldots, x_{n}\right)
$$

$B\left(x_{1}, \ldots, x_{n}\right)$ is a Boolean formula, $Q_{i} \in\{\forall, \exists\}$ with quantification over $\{0,1\}$

Observation

- $\exists x_{1} \ldots \exists x_{n} B\left(x_{1}, \ldots, x_{n}\right)$-QBF = SAT
- $\forall x_{1} \ldots \forall x_{n} B\left(x_{1}, \ldots, x_{n}\right)-$ QBF $=$ VALIDITY

Theorem

QBF is $\leqslant{ }_{m}^{\log }$-complete for PSPACE

Definition
information game a 2-person perfect information game is a graph $G=(B O A R D S, M O V E)$ and a start state $s \in$ BOARDS

- BOARDS defines the play field
- MOVE specifies the legal actions
- players alternate, Player I starts in s
- Player I chooses $s_{1} \in \operatorname{BOARDS}$, such that $\operatorname{MOVE}\left(s, s_{1}\right)$
- Player II chooses $s_{2} \in \operatorname{BOARDS}$, such that $\operatorname{MOVE}\left(s_{1}, s_{2}\right) \ldots$
- a player wins, if the other cannot make a move

Definition

- CHECKMATE $(y): \Leftrightarrow \forall z \neg \operatorname{MOVE}(y, z)$
- $\operatorname{WIN}(x) \Leftrightarrow \exists \operatorname{MOVE}(x, y) \wedge \forall z(\operatorname{MOVE}(y, z) \rightarrow \operatorname{WIN}(z))$
- for $x \in \operatorname{BOARDS} \wedge \operatorname{WIN}(x)$, x is forced win

Definition

generalised geography
a triple (C, E, s) is called a generalised geography game if

- (C, E) directed graph
- $s \in C$
- Player I starts in $s=s_{0}$ and moves in even states from $s_{2 i}$ to adjacent vertex $s_{2 i+1}$
- Player II moves from $s_{2 i+1}$ to $s_{2 i+2}$
- vertexes must not be revisited

Theorem
Generalised geography is $\leqslant_{m}^{\text {log }}$-complete for PSPACE

Homework

1 Miscellaneous Exercises 11
2 Miscellaneous Exercises 14
3 Miscellaneous Exercises 26

Definition of PH via ATMs
Definition
a Σ_{k}-machine is an ATM for which the computation path is dividable in separate sections on any input and
1 any section consists only of \wedge - or \vee-configurations
$[2$ at most k sections
3 the first consist of V-configurations
a Π_{k}-machine is defined by swapping \vee and \wedge
Σ_{0}, Π_{0} are defined to be deterministic TMs
Example
a Σ_{1}-machine is a nondeterministic TM
Definition

$$
\begin{aligned}
& \Sigma_{k}^{\mathrm{p}}:=\left\{\mathrm{L}(M) \mid M \text { is polytime bounded } \Sigma_{k}^{\mathrm{P}} \text {-machines }\right\} \\
& \Pi_{k}^{\mathrm{P}}:=\left\{\mathrm{L}(M) \mid M \text { is polytime bounded } \Pi_{k}^{\mathrm{p}} \text {-machines }\right\}
\end{aligned}
$$

Lemma

$$
\begin{aligned}
\Pi_{k}^{\mathrm{p}} & =\mathrm{co}-\Sigma_{k}^{\mathrm{p}}=\left\{\sim A \mid A \in \Sigma_{k}^{\mathrm{p}}\right\} \\
\Sigma_{k}^{\mathrm{p}} \cup \Pi_{k}^{\mathrm{p}} & \subseteq \Sigma_{k+1}^{p} \cap \Pi_{k+1}^{p} \\
\bigcup_{k \geqslant 1} \Sigma_{k}^{\mathrm{p}} & =\bigcup_{k \geqslant 0} \Pi_{k}^{\mathrm{p}} \subseteq \operatorname{PSPACE}
\end{aligned}
$$

Definition

$$
H_{k}:=\left\{M \# x \#^{m} \mid M \text { an ATM and } M_{k}^{m} \text { accepts } \times\right\}
$$

here M_{k}^{m} denotes the modification of M such that
1 at most k intervals of \wedge - and \vee-configurations, beginning with \vee
2 runtime at most m

Lemma

H_{k} is $\leqslant_{m}^{\log }$-complete for Σ_{k}^{p} and $\sim H_{k}$ is $\leqslant_{m}^{\log }$-complete for Π_{k}^{p}

Definition

- an oracle machine is a $T M M^{B}$ with an extra write-only tape, the oracle tape
- M^{B} additionally has oracle query state and specific oracle answer states "yes" and "no"
- M^{B} writes y on oracle tape, oracle answers "yes" if $y \in B$ and "no" otherwise

Definition

let B be a language and \mathcal{C} a complexity class

$$
\left.\begin{array}{rl}
P^{B} & :=\{\mathrm{L}(M) \mid M \text { is a deterministic, polytime bounded or- } \\
\text { acle machine with oracle } B\}
\end{array}\right\}
$$

Lemma
if B is $\leqslant_{m}^{\text {log }}$-complete for \mathcal{C}, then $\{P, N P\}^{\mathcal{C}}=\{P, N P\}^{B}$

Definition

we defined polytime Turing reducibility $\leqslant_{T}^{\mathrm{p}}$ as follows:

$$
A \leqslant_{T}^{\mathrm{p}} B \quad \text { if } \quad A \in \mathrm{P}^{B}
$$

Lemma
if $A \leqslant_{m}^{\log } B$ then $A \leqslant_{m}^{\mathrm{p}} B$ and $A \leqslant_{T}^{\mathrm{p}} B$

Theorem consider

$$
N P \subseteq N P^{N P} \subseteq N P^{N P^{N P}} \ldots
$$

i.e., $N P_{1}:=N P$ and $N P_{k+1}:=N P^{N P_{k}}$, then $\forall k \geqslant 1: N P_{k}=\Sigma_{k}^{p}$
define $\exists^{t} x \varphi(x): \Leftrightarrow \exists x|y| \leqslant t \wedge \varphi(x)$ and $\forall^{t} x \varphi(x): \Leftrightarrow \forall x|y| \leqslant t \rightarrow \varphi(x)$
Theorem
a language L is in Σ_{k}^{p} iff there is a deterministic polytime computable ($k+1$)-ary predicate R and a constant c such that

$$
A=\left\{\left.x|\exists| x\right|^{c} y_{1} \forall^{|x|^{c}} y_{2} \exists^{|x|^{c}} y_{3} \ldots Q^{|x|^{c}} y_{k} R\left(x, y_{1}, \ldots, y_{k}\right)\right.
$$

$(Q \in\{\exists, \forall\})$

