

Complexity Theory

Georg Moser

Institute of Computer Science @ UIBK

Summer 2008

GM (Institute of Computer Science @ UIBK)

Complexity Theory

1/17

Outline

- Summary of Last Lecture: Problems Complete for PSPACE
- (Old) Exercises
- Definition of PH via ATMs
- Oracle Machines and Relativised Complexity Classes
- Equivalence

Definition QBF

the quantified Boolean formula problem is the problem of determining the truth of

$$Q_1x_1Q_2x_2...Q_nx_nB(x_1,...,x_n)$$

 $B(x_1, ..., x_n)$ is a Boolean formula, $Q_i \in \{\forall, \exists\}$ with quantification over $\{0, 1\}$

Observation

- $\exists x_1 \dots \exists x_n B(x_1, \dots, x_n)$ -QBF = SAT
- $\forall x_1 \dots \forall x_n B(x_1, \dots, x_n)$ -QBF = VALIDITY

Theorem

QBF is \leq_m^{\log} -complete for PSPACE

GM (Institute of Computer Science @ UIBK)

Complexity Theory

9/17

Definition

information game

a 2-person perfect information game is a graph G = (BOARDS, MOVE) and a start state $s \in BOARDS$

- BOARDS defines the play field
- MOVE specifies the legal actions
- players alternate, Player I starts in s
- Player I chooses $s_1 \in \mathsf{BOARDS}$, such that $\mathsf{MOVE}(s,s_1)$
- Player II chooses $s_2 \in \mathsf{BOARDS}$, such that $\mathsf{MOVE}(s_1, s_2) \ldots$
- a player wins, if the other cannot make a move

Definition

- CHECKMATE(y) : $\Leftrightarrow \forall z \neg \mathsf{MOVE}(y, z)$
- WIN(x) $\Leftrightarrow \exists MOVE(x, y) \land \forall z (MOVE(y, z) \rightarrow WIN(z))$
- for $x \in BOARDS \land WIN(x)$, x is forced win

Definition

generalised geography

a triple (C, E, s) is called a generalised geography game if

- (C, E) directed graph
- s ∈ C
- Player I starts in $s = s_0$ and moves in even states from s_{2i} to adjacent vertex s_{2i+1}
- Player II moves from s_{2i+1} to s_{2i+2}
- vertexes must not be revisited

Theorem

Generalised geography is \leq_m^{\log} -complete for PSPACE

GM (Institute of Computer Science @ UIBK) Complexity Theory

Homework

- Miscellaneous Exercises 11
- Miscellaneous Exercises 14
- 3 Miscellaneous Exercises 26

Definition of PH via ATMs

Definition Σ_k -machine

a Σ_k -machine is an ATM for which the computation path is dividable in separate sections on any input and

- 1 any section consists only of ∧- or ∨-configurations
- 2 at most k sections
- **3** the first consist of ∨-configurations
- a Π_k -machine is defined by swapping \vee and \wedge

 Σ_0 , Π_0 are defined to be deterministic TMs

Example

a Σ_1 -machine is a nondeterministic TM

Definition

 $\Sigma_k^{\mathsf{p}}, \, \Pi_k^{\mathsf{p}}$

 $\Sigma_k^{\mathbf{p}} := \{ \mathrm{L}(M) \mid M \text{ is polytime bounded } \Sigma_k^{\mathbf{p}} \text{-machines} \}$ $\Pi_k^{\mathbf{p}} := \{ \mathrm{L}(M) \mid M \text{ is polytime bounded } \Pi_k^{\mathbf{p}} \text{-machines} \}$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

13/17

Definition of PH via ATM:

Lemma

$$\Pi_{k}^{p} = \operatorname{co} - \Sigma_{k}^{p} = \{ \sim A \mid A \in \Sigma_{k}^{p} \}$$

$$\Sigma_{k}^{p} \cup \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p} \cap \Pi_{k+1}^{p}$$

$$\bigcup_{k \geqslant 1} \Sigma_{k}^{p} = \bigcup_{k \geqslant 0} \Pi_{k}^{p} \subseteq \mathsf{PSPACE}$$

Definition

 H_k

$$H_k := \{M \# x \#^m \mid M \text{ an ATM and } M_k^m \text{ accepts } x\}$$

here M_k^m denotes the modification of M such that

- **11** at most k intervals of \land and \lor -configurations, beginning with \lor
- 2 runtime at most m

Lemma

$$H_k$$
 is \leqslant_m^{\log} -complete for Σ_k^p and $\sim H_k$ is \leqslant_m^{\log} -complete for Π_k^p

Definition

- an oracle machine is a TM M^B with an extra write-only tape, the oracle tape
- M^B additionally has oracle query state and specific oracle answer states "yes" and "no"
- M^B writes y on oracle tape, oracle answers "yes" if $y \in B$ and "no" otherwise

Definition

let B be a language and $\mathcal C$ a complexity class

 $\mathsf{P}^B := \{ \mathrm{L}(M) \mid M ext{ is a deterministic, polytime bounded oracle } M$

 $NP^B := \{L(M) \mid M \text{ is a nondeterministic, polytime bounded}$ oracle machine with oracle $B\}$

$$\mathsf{P}^{\mathcal{C}} := \bigcup_{B \in \mathcal{C}} \mathsf{P}^{B}$$

$$\mathsf{NP}^{\mathcal{C}} := \bigcup_{B \in \mathcal{C}} \mathsf{NP}^{B}$$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

15/17

Equivalences

Lemma

if B is \leq_m^{\log} -complete for C, then $\{P, NP\}^C = \{P, NP\}^B$

Definition

we defined polytime Turing reducibility \leqslant^p_T as follows:

$$A \leqslant_T^p B$$
 if $A \in P^B$

Lemma

if $A \leq_m^{\log} B$ then $A \leq_m^{p} B$ and $A \leq_T^{p} B$

Theorem

consider

$$NP \subseteq NP^{NP} \subseteq NP^{NP^{NP}} \dots$$

i.e.,
$$NP_1 := NP$$
 and $NP_{k+1} := NP^{NP_k}$, then $\forall k \geqslant 1$: $NP_k = \sum_{k=1}^{p} P_k$

define
$$\exists^t x \ \varphi(x) : \Leftrightarrow \exists x |y| \leqslant t \land \varphi(x)$$
 and $\forall^t x \ \varphi(x) : \Leftrightarrow \forall x |y| \leqslant t \rightarrow \varphi(x)$

Theorem

a language L is in $\Sigma_k^{\rm p}$ iff there is a deterministic polytime computable (k+1)-ary predicate R and a constant c such that

$$A = \{x \mid \exists^{|x|^c} y_1 \forall^{|x|^c} y_2 \exists^{|x|^c} y_3 \dots Q^{|x|^c} y_k R(x, y_1, \dots, y_k)\}$$

$$(Q \in \{\exists, \forall\})$$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

17/17