

Complexity Theory

GM (Institute of Computer Science @ UIBK)

9/17 GM (Institute of Computer Science @ UIBK)

Complexity Theory

10/1

	Homework
 Definition generalised geography game if (C, E) directed graph s ∈ C Player I starts in s = s₀ and moves in even states from s_{2i} to adjacent vertex s_{2i+1} Player II moves from s_{2i+1} to s_{2i+2} vertexes must not be revisited Theorem Generalised geography is ≤ ^{log} _m -complete for PSPACE	 Miscellaneous Exercises 11 Miscellaneous Exercises 14 Miscellaneous Exercises 26
GM (Institute of Computer Science @ UIBK) Complexity Theory 11/17	GM (Institute of Computer Science @ UIBK) Complexity Theory 12/17
Definition of PH via ATMS Definition of PH via ATMS D_{k} -machine a Σ_{k} -machine is an ATM for which the computation path is dividable in separate sections on any input and any section consists only of \wedge - or \vee -configurations a t most k sections b the first consist of \vee -configurations a Π_{k} -machine is defined by swapping \vee and \wedge Σ_{0} , Π_{0} are defined to be deterministic TMs Example a Σ_{1} -machine is a nondeterministic TM Definition $\Sigma_{k}^{p} := \{L(M) \mid M \text{ is polytime bounded } \Sigma_{k}^{p}-\text{machines} \}$ $\Pi_{k}^{p} := \{L(M) \mid M \text{ is polytime bounded } \Pi_{k}^{p}-\text{machines} \}$	Lemma $\Pi_{k}^{p} = co - \Sigma_{k}^{p} = \{\sim A \mid A \in \Sigma_{k}^{p}\}$ $\Sigma_{k}^{p} \cup \Pi_{k}^{p} \subseteq \Sigma_{k+1}^{p} \cap \Pi_{k+1}^{p}$ $\bigcup_{k \ge 1} \Sigma_{k}^{p} = \bigcup_{k \ge 0} \Pi_{k}^{p} \subseteq PSPACE$ Definition $H_{k} := \{M \# x \#^{m} \mid M \text{ an ATM and } M_{k}^{m} \text{ accepts } x\}$ here M_{k}^{m} denotes the modification of M such that 1 at most k intervals of \wedge - and \vee -configurations, beginning with \vee 2 runtime at most m Lemma $H_{k} := \{orrestance for \Sigma_{k}^{p} \text{ and } \sim H_{k} \text{ is } \leq_{m}^{\log}\text{-complete for } \Pi_{k}^{p}$

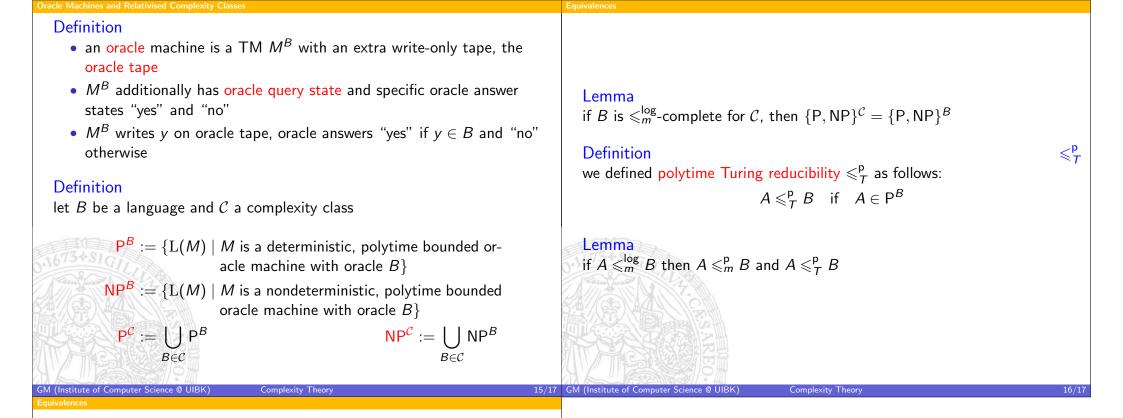
13/17 GM (Institute of Computer Science @ UIBK)

Complexity Theory

14/17

GM (Institute of Computer Science @ UIBK)

Complexity Theory



Theorem

consider

$$\mathsf{NP} \subseteq \mathsf{NP}^{\mathsf{NP}} \subseteq \mathsf{NP}^{\mathsf{NP}^{\mathsf{NP}}} \dots$$

i.e., $NP_1 := NP$ and $NP_{k+1} := NP^{NP_k}$, then $\forall k \ge 1$: $NP_k = \Sigma_k^p$

define $\exists^t x \ \varphi(x) :\Leftrightarrow \exists x | y | \leq t \land \varphi(x)$ and $\forall^t x \ \varphi(x) :\Leftrightarrow \forall x | y | \leq t \rightarrow \varphi(x)$

Theorem

a language L is in Σ_k^p iff there is a deterministic polytime computable (k+1)-ary predicate R and a constant c such that

$$A = \{x \mid \exists^{|x|^c} y_1 \forall^{|x|^c} y_2 \exists^{|x|^c} y_3 \dots Q^{|x|^c} y_k R(x, y_1, \dots, y_k)\}$$

 $(\mathsf{Q} \in \{\exists,\forall\})$

GM (Institute of Computer Science @ UIBK)

Complexity Theory

17/1