Model Checking (VO)	SS 2008	LVA 703521
First name:		
Last name:		
Matriculation number:		

- Write your name and matriculation number on every page.
- Please answer all exercises in a readable and precise way. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points
1	35	
2	30	
3	20	
4	15	
Σ	100	
Grade		

Exercise 1 (20 + 15 points)

Consider the following transition system and formula.

- Complete the game-graph which is depicted on the next page.
- Color the game-graph using the bottom-up coloring algorithm. Mark your nodes by (g)reen or (r)ed and additionally indicate whether a node was colored during a (p)ropagation-phase or whether it was colored since it remained (w)hite after propagation stopped. So, label each node with one of {gp,rp,gw,rw}.

Exercise 2 (18 + 12 points)

Consider the following NBA \mathcal{A} .

• Compute the *A*-equivalence classes by giving their shortest representatives and the corresponding transition profiles.

representative w	tp(w)

• Construct the S1S-formula $\varphi_{\mathcal{A}}(\mathsf{a})$ using the construction from the lecture (and not the optimized version from the exercises).

Exercise 3 (20 points)

Consider a crossing with two traffic lights, each having phases red-orange-green-orange-red-.... Construct timed automata TA_i ($i \in \{1, 2\}$) for each of the traffic lights such that the following conditions are satisfied:

- The combination of the lights is safe, i.e., if one light is in a non-red state, then the other light shows red.
- Each green phase is between 30 and 40 seconds long.
- There is a delay between 2 and 3 seconds after the switch from orange to red on the one light, before the switch from red to orange is performed on the other light.
- Each orange phase takes exactly 5 seconds.
- Both lights show green infinitely often.
- TA_1 and TA_2 are symmetrical, only the initial state differs: TA_1 starts in a red state, TA_2 in a green one.

For symmetry reasons you only have write down TA_1 .

Exercise 4 (15 points)

The theorem of Knaster & Tarski can be lifted to infinite sets S. Essentially, one replaces $\tau^{|S|}(\emptyset)$ by

$$fp_{\tau} = \bigcup_{n \in \mathbb{N}} \tau^n(\emptyset).$$

Prove that if $\tau: 2^S \to 2^S$ is monotone then $fp_\tau \subseteq \tau(fp_\tau)$.