Model Checking (VO)	SS 2008	LVA 703521
---------------------	---------	------------

First name:	
Last name:	
Matriculation number:	

- Write your name and matriculation number on every page.
- Please answer all exercises in a readable and precise way. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points	
1	22		
2	24		
3	35		
4	19		
Σ	100		
Grade			

Exercise 1 (18 + 4 points)

Consider the following NBA \mathcal{A} (where labels are omitted).

• Fill the table which is obtained when using the algorithm of Yannakakis et. al. where successors are taken in order, i.e., successor q_i is taken before q_j iff i < j.

Here, you should at least write down a new line whenever the set of marked or flagged states are changed. You may abbreviate q_i by i and you may use $\{1-4,6\}$ to indicate the set $\{q_1,q_2,q_3,q_4,q_6\}$, etc.

$outer_dfs\text{-}stack$	$_{ m inner_dfs\text{-}stack}$	marked	flagged
arepsilon	ε	Ø	Ø
	I .		l

• Is there an accepting run of A? If so, which run is extracted by the algorithm?

Exercise 2 (12 + 12 points)

• Consider the following language:

$$\left(\begin{array}{c} 0\\1\end{array}\right)^*\left(\begin{array}{c} 0\\0\end{array}\right)\left(\left(\begin{array}{c} 1\\1\end{array}\right)\left(\begin{array}{c} 1\\0\end{array}\right)\left(\begin{array}{c} 1\\1\end{array}\right)\right)^\omega$$

Write down an F1S- or S1S-formula for this language and shortly explain your formula. If you used S1S, do you think it is possible with F1S?

• Intuitively construct NFAs \mathcal{A}_1 and \mathcal{A}_2 for the languages $a(ba)^*$ and bab^* . Then construct an NBA \mathcal{A}_3 for the language $(a(ba)^*) \cdot (bab^*)^{\omega}$ using the construction from the lecture. Write down all three automata \mathcal{A}_1 , \mathcal{A}_2 , and \mathcal{A}_3 .

Exercise 3 (34 + 1 points)

Consider the following timed automaton.

• Construct the reachable part of the region transition system for this automaton. (It has 17 states.)

• Does the timed automata have a time-lock?

Exercise 4 (19 points)

Recall the definition of simulation equivalence \simeq :

- $TS_1=(S_1, \rightarrow_1, I_1, AP, L_1) \leq TS_2=(S_2, \rightarrow_2, I_2, AP, L_2)$ if there is a simulation relation R for TS_1 and TS_2 :
 - for all $s \in I_1$ there exists $t \in I_2$: sRt
 - whenever sRt then $L_1(s) = L_2(t)$
 - whenever sRt and $s \rightarrow_1 s'$ then there exists t': $t \rightarrow_2 t'$ and s'Rt'
- $\bullet \simeq \ = \ \preceq \cap \succeq$

Proof that \simeq is an equivalence relation (reflexive, symmetric, transitive). Whenever you define some simulation relation R then you do not have to formally show that R really is a simulation relation.