
Exercises for the Lecture Model Checking

(703521, SS08)

May 13, 2008

1. Consider the following NBA A (where input letters are omitted).

0 1 4 5

2 3 6 7

8 9 10 11

Apply the linear on-the-fly algorithm to check L(A) = ∅. In the algorithm
successors with small numbers should be taken first. Which accepting run
is detected by the algorithm? Which states are marked, which are flagged?

2. Consider the following transition system TS.

• init states() = {39}

• succ states(s) =

{
{3s+ 1} if s is odd
{ s2} if s is even

• label state(s) =

 s mod 7 = 1
s mod 7 > 2
s mod 7 > 4


Use on-the-fly model-checking to determine whether TS |= ϕ. Here, the
NBA A¬ϕ has the following structure where each ∗ can be both 0 or 1.

p q r

(
∗
∗
1

) (
1

∗
∗

)
(

∗
1

∗

) (
∗
∗
∗

)

3. Translate the formula aU (bU X (a ∧ b)) into F1S.

4. Recall the construction of the S1S formulas ϕA for some NBA A. Cur-
rently it uses m additional second-order variables b1, . . . , bm where m is the
number of states of A. Improve this construction and show that log(m)
additional variables suffice. You can assume that the number of states is
a power of 2.

5. Construct the S1S-formula ϕA(a) for the following NBA A using the con-
struction from the lecture.

p q r
0

1

0

0, 1 0

6. Show that every S1S0-formula can be translated into S1S (only give the
construction).

7. Give F1S- or S1S-formulas for the following languages.

•
(

1
1

)(
1
0

)∗((
1
1

)(
0
0

))ω
•
((

1
1

)(
1
1

)(
1
1

))∗(
0
1

)ω
8. Transform the following formula to S1S0 using the transformation of the

lecture.
∀x : 0 < x ∨ c(x)

9. Consider the NBA A of Exercise 5.

• Compute the A-equivalence classes U1, . . . , Un by giving their short-
est representatives and the corresponding transition profiles.
(So you don’t have to compute regular expressions or NFAs for each
Ui!)

• For each of the words w1 = 010110111011110 . . . and w2 = 01001000100001 . . .
find Ui and Uj such that w1/2 ∈ Ui · Uωj .
(Hence, for some transition profiles you need to compute the corre-
sponding equivalence classes. Do this intuitively and don’t use the
large intersection shown in Step 5.1 (Slide 42 of Week 2).)

10. Transform the following S1S0-formula to an NBA using the construction
of the lecture.

∃c : succ(c, a) ∨ a ⊆ b

11. Construct an NBA for the language (aa)∗ · (abb∗+ b)ω using the construc-
tion from the lecture. Start with constructing NFAs for (aa)∗ and abb∗+b
intuitively.

12. Prove [[¬µx.ϕ]]α = [[νx.¬ϕ[x/¬x]]]α, one essential equality which is needed
to ensure soundness of the transformation to PNF.

Hint: Expand [[.]] as much as possible and perform induction over the
number of fixpoint-iterations, i.e., over the n in τn(. . .). A graphical
interpretation of the fixpoint-iteration might also be helpful (using set
diagrams).

13. Perform µ-calculus model checking for the following example.

ϕ = µx.〈a〉¬µy.((¬x ∨ y) ∧ [b]y)

s1 s2

b

a

(a) Transform ϕ into an equivalent formula ψ in PNF. What is the al-
ternation depth of ψ? (Note that ϕ only contains µ-operators)

(b) Determine TS |= ϕ using the naive model checking algorithm.
(c) Determine TS |= ϕ by checking TS |= ψ with the algorithm of Emer-

son and Lei.

14. Perform model-checking for the following transition system and the for-
mula νx.ϕx using the algorithm of Emerson and Lei where

ϕx = (νy.ϕy) ∧ µz.ϕz
ϕy = [a](x ∧ y)
ϕz = (νw.ϕw) ∨ 〈b〉(z ∧ x)
ϕw = 〈c〉w ∧ ¬p

s1 s2

p

s4 s3

abc

acc
bc

bc

ac

15. Currently the algorithm of Emerson and Lei only accepts formulas in PNF.
If it would accept arbitrary closed formulas, it is straight-forward to define
sem(¬ϕ) = return S \ sem(ϕ).

Figure out why this algorithm is unsound. (Exercise 13 may be helpful.)

16. Prove the variant of the theorem of Knaster & Tarski.

17. Perform model-checking using the bottom-up and the top-down coloring
algorithms for the following transition system and formula.

ϕ = µx.

(((
[a]νy.(¬p ∧ [b]y)

)
∧ [b]x

)
∨
(
[c]νz.p ∧ 〈a〉z

))

s1

s2

s3 s4

p

s5 s6 s7

s8

p

a

c

c

a

b
b

a

bc
b

a

a abc

ac

18. In the lecture, model checking via games was only introduced for transition
systems with one initial state. Show that this is not a real restriction:
Given arbitrary TS and ϕ, construct TS′ and ψ such that TS′ has exactly
one initial state and TS |= ϕ iff TS′ |= ψ.

19. Explain how one can extract the positional winning strategies of ∃loise
and ∀belard from the bottom-up coloring algorithm. (You do not have to
prove that your extracted strategy really is a winning strategy.)

20. Prove ∼TS ⊆ ≡CTL∗ by showing the following statements.

• If s ∼TS t then for all CTL∗-state-formulas Φ: s |= Φ iff t |= Φ
• If π ∼TS π

′ then for all CTL∗-path-formulas ψ: π |= ψ iff π′ |= ψ

21. In the lecture, ≡CTL is a relation between states. One can also interpret
≡CTL as a relation between transition systems, where TS1 ≡CTL TS2 iff
TS1 and TS2 satisfy the same CTL-formulas. Prove or disprove:

≡CTL ⊆ ∼

(every two non-bisimilar systems can be distinguished by a CTL formula)

22. Prove that every system is bisimilar to its quotient, i.e., TS ∼ (TS/∼).

23. Use the partitioning algorithm to decide TSi ∼ TSj for i 6= j for the follow-
ing transition systems where TS1 = ({s1, . . . , s6}, . . .), TS2 = ({t1, . . . , t5},
. . .), and TS3 = ({u1, . . . , u8}, . . .). In case of TSi 6∼ TSj try to find a
CTL-formula which can distinguish the systems (cf. Exercise 21). Note,
that one can easily extend the CTL-semantics to transition systems with
terminal states, e.g., E aU b means that there is some finite or infinite path
such that some state in this path satisfies b and all states before satisfy a.
Moreover, A Xϕ is always true in a terminal state whereas E Xϕ is never
satisfied in a terminal state.

s1

a
s2

a, b

s3a, b s4 a, b

s5 s6

t1

a
t2

a, b

t3 a, b

t4 t5

u1

a, b

u2

u3

a
u4 a, b

u5a, b u6 a

u7 u8 a, b

24. Explicitly construct the complete timed automaton for the train-controller-
gate example, i.e., construct

(Train ||H1 Controller) ||H2 Gate

where H1 = {approach,exit} and H2 = {lower,raise}.

25. Show that “TA contains a time-lock” can be expressed as a TCTL-model
checking problem as follows:

TA contains a time-lock iff for all reachable states s: s |= . . .

26. Four robbers are on a nightly escape and have to pass a small bridge. The
bridge can only carry two robbers at the time and it is necessary to use a
flashlight to pass the bridge. Unfortunately, the robbers only possess one
flashlight. Moreover, the robbers need different times to pass the bridge
(5, 10, 20, and 25 minutes). Of course, if two of the robbers pass the
bridge then they will need the time of the slower robber. The question
now is, whether all four robbers can pass the bridge within one hour.

• Model the question as a TCTL-model checking problem where you
have to provide both the timed automaton and the formula.

• Answer the question and provide evidence in form of a compressed
path.

27. Consider the following timed automaton TA.

off
on

x 6 1

x = 1: sw off

x = 1: sw on
{x}

In the lecture, RTS(TA, . . .) and parts of RTS(TA] {z}, . . . z < 1 . . .)
have been constructed (Slides 42 and 46) which were sufficient to prove
TA 6|= A G<1on.

Compute Sat(A G<1on) ⊆ {A, . . . , G} where A, . . . , G are the states of
RTS(TA, . . .), cf. Slide 42. For this, you should construct the reachable
part of RTS(TA] {z}, . . . z < 1 . . .) starting from all states that are re-
quired to determine Sat(A G<1on).

