

Model Checking

René Thiemann

Institute of Computer Science
University of Innsbruck

SS 2008

RT (ICS @ UIBK) week 1 1/28

Outline

- Organization & Overview
- Model Checking On-the-Fly

Organization

- Last lecture = 1st exam
- Some of the lectures are used solely to discuss exercises
- Option: some weeks with 4 hours MC to finish early in semester
- ⇒ Date of exam is before "exam week"

Literature

- Christel Baier and Joost-Pieter Katoen,
 Principles of Model Checking, MIT Press, 2008
- Edmund M. Clarke, Orna Grumberg, and Doron A. Peled, Model Checking, MIT Press, 1999
- 34.91

Prerequisites

- Basic knowledge of Logic
- Basic knowledge of CTL & LTL
- Basic knowledge of Transition Systems
- Basic knowledge of Büchi Automata

RT (ICS @ UIBK) week 1 4/28

Organization & Overview

Selection of Topics

- Model checking on-the-fly (today)
- S1S
- μ -calculus
- Model checking of real-time systems
- Controlling the state-space explosion problem
- 1.2.2.1

μ -Calculus

In CTL: semantics based on least and greatest fixpoint

In μ -calculus:

- explicit least- and greatest fixpoint operators
- easy to implement
- ullet many logics can be translated into μ -calculus
- parallel model checking algorithms available
- \Rightarrow μ -calculus as efficient basis for model-checking for several logics

RT (ICS @ UIBK) week 1 6/2

Organization & Overview

S₁S

Consider the following property:

Between every green and red phase there is at least one orange phase.

Formulating these kinds of properties in LTL is doable, but not intuitive

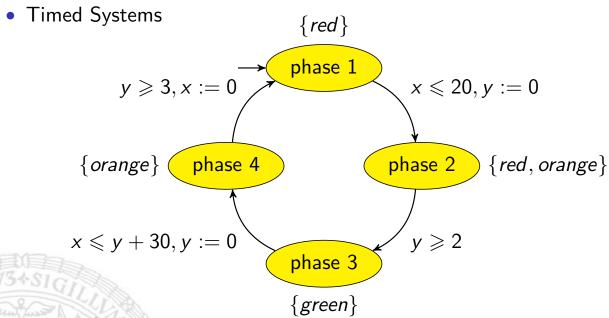
$$G(red \Rightarrow X(G \neg green) \lor (\neg green \land (X \neg green \cup orange))))$$

Use S1S instead:

$$\forall t_1, t_2 : (t_1 < t_2 \land \mathsf{green}(\mathsf{t}_1) \land \mathsf{red}(\mathsf{t}_2)) \Rightarrow \exists t_3 : t_1 < t_3 < t_2 \land \mathsf{orange}(\mathsf{t}_3)$$

- Allows readable and succinct specifications
- One can perform model checking using Büchi automata

Model Checking of Real-Time Systems



Timed Specifications
 One does not have to wait more than 50 seconds for green:

$$\Phi = G F^{\leqslant 50}$$
green

RT (ICS @ UIBK) week 1 8/28

Organization & Overview

Controlling the State-Space Explosion Problem

Reduce search space in various ways

- Abstraction: instead of 16-bit integer, only distinguish between even and odd, or between positive, 0, negative, or between . . .
- Partial order reduction:
 if process 1 and process 2 perform operations on local variables,
 then schedule process 1 always before process 2
- ⇒ less interleaving, smaller transition system

LTL Model Checking

Given: Transition system TS, LTL-formula φ

- $TS \models \varphi \text{ iff } \mathcal{L}(TS) \subseteq \mathcal{L}(\varphi)$
- Algorithmic Solution (IMC): Build Non-deterministic Büchi Automata $\mathcal{A}_{\neg \varphi}$ with $\mathcal{L}(\mathcal{A}_{\neg \varphi}) = \overline{\mathcal{L}(\varphi)}$ Build intersection NBA: $\mathcal{B} = TS \otimes \mathcal{A}_{\neg \varphi}$

$$\mathcal{L}(\mathcal{B}) = \mathcal{L}(TS) \setminus \mathcal{L}(\varphi)$$

Finally check $\mathcal{L}(\mathcal{B}) = \varnothing$

RT (ICS @ UIBK) week 1 11/28

Model Checking On-the-Fly

Non-deterministic Büchi Automata

- Remember: NBA \mathcal{A} is 5-tuple $(\mathcal{Q}, \Sigma, q_0, \delta, F)$
 - Q: finite set of states
 - Σ : finite set of letters, input alphabet
 - $q_0 \in \mathcal{Q}$: initial state
 - $\delta: \mathcal{Q} \times \Sigma \to 2^{\mathcal{Q}}$: transition function
 - $F \subseteq \mathcal{Q}$: final (accepting) states
- Run for $w=a_0\,a_1\,a_2\dots\in\Sigma^\omega$ is infinite sequence $q_0\,q_1\,q_2\,\dots$ with

$$q_{i+1} \in \delta(q_i, a_i) \quad (q_i \stackrel{a_i}{\longrightarrow} q_{i+1}) \qquad ext{ for all } i \in {\rm I\! N}$$

- Run $q_0 q_1 \ldots q_n \ldots$ is accepting if for infinitely many $i \colon q_i \in \mathsf{F}$
- $ullet \ w \in \Sigma^\omega$ is accepted by ${\mathcal A}$ if there exists an accepting run for w
- The accepted language of A:

 $\mathcal{L}(\mathcal{A}) = ig\{ w \in \Sigma^\omega \mid ext{ there exists an accepting run for } w ext{ in } \mathcal{A} ig\}$

Checking Emptiness of NBAs

- For checking emptiness, input letters can be ignored
- ⇒ Obtain finite graph from NBA
 - Since Q is finite, each infinite run must end in cycle
 - $\mathcal{C} \subseteq \mathcal{Q}$ is cycle iff every state of \mathcal{C} is reachable from every state of \mathcal{C}
- $\Rightarrow \mathcal{L}(\mathcal{A}) \neq \emptyset$ iff \mathcal{A} has path from initial state to cycle \mathcal{C} which contains final state

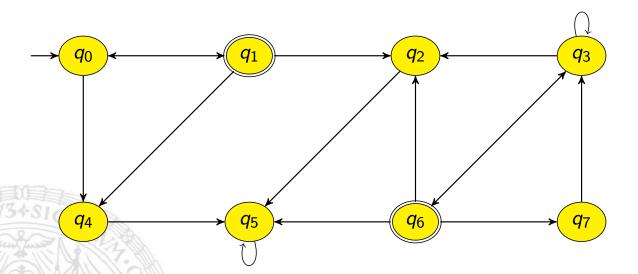
Solution via Strongly Connected Components

- 1. Compute SCCs (maximal cycles) of $\mathcal A$ by Tarjan's algorithm
- 2. Perform depth first search (DFS) to determine reachable SCCs
- 3. $\mathcal{L}(A) \neq \emptyset$ iff one of the reachable SCCs contains final state
- ⇒ Linear time complexity (optimal)
- ⇒ Complete graph is required in step 1

RT (ICS @ UIBK) week 1 13/28

Model Checking On-the-Fly

Example



Checking Emptiness of NBAs

Solution via Strongly Connected Components

- 1. Compute SCCs (maximal cycles) of A by Tarjan's algorithm
- 2. Perform DFS to determine reachable SCCs
- 3. $\mathcal{L}(A) \neq \emptyset$ iff one of the reachable SCCs contains final state
- ⇒ Linear time complexity (optimal)
- ⇒ Complete NBA is required for step 1

Naive On-the-Fly Solution

- 1. Compute reachable final states R_F by outer DFS
- 2. For each visited $q \in R_F$ in step 1 directly check whether it belongs to a cycle by an inner DFS
- ⇒ Complete NBA not required
- ⇒ only parts of NBA have to be generated during DFSs (on-the-fly)

RT (ICS @ UIBK) week 1 15/28

Model Checking On-the-Fly

Naive Algorithm

```
outer_dfs(q_0)

terminate(true) // Yes, \mathcal{L}(\mathcal{A}) = \emptyset

procedure outer_dfs(q)

mark(q)

if q \in F then inner_dfs(q)

for all successors q' of q do

if q' not marked then outer_dfs(q')
```

```
procedure inner_dfs(q)

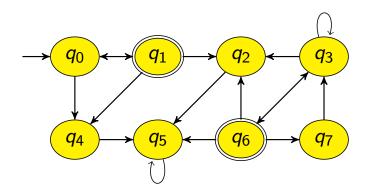
flag(q) // for each outside call of inner_dfs(q) new flags are used

for all successors q' of q do

if q' on outer_dfs-stack then terminate(false) // \mathcal{L}(\mathcal{A}) \neq \emptyset

else if q' not flagged then inner_dfs(q')
```

Example



RT (ICS @ UIBK) week 1 17/28

Model Checking On-the-Fly

Example (2n + 1 states)

Example (but $\geq n^2$ steps)

outer_dfs-stack	inner_dfs-stack	marked	${\sf flagged}$
arepsilon	_	Ø	_
q_0	_	$\{q_0\}$	_
$f_1 q_0$	_	$\{q_0,f_1\}$	_
$f_1 q_0$	f_1	$\{q_0,f_1\}$	$\{f_1\}$
$f_1 q_0$	$q_n \dots q_1 f_1$	$\{q_0,f_1\}$	$\{f_1,q_1,\ldots,q_n\}$
$f_1 q_0$	f_1	$\{q_0,f_1\}$	$\{f_1,q_1,\ldots,q_n\}$
$f_1 q_0$	_	$\{q_0,f_1\}$	_
$q_1 f_1 q_0$	_	$\{q_0,f_1,q_1\}$	_
$q_n \dots q_1 f_1 q_0$	_	$\{q_0, f_1, q_1, \ldots, q_n\}$	_
$f_2 q_0$	f_2	$\{q_0, f_1, f_2, q_1, \ldots, q_n\}$	$\{f_2\}$

Now for every f_2, \ldots, f_n one visits all states q_1, \ldots, q_n again

RT (ICS @ UIBK)

week

19/28

Model Checking On-the-Fly

outer_dfs (q_0)

Linear On-the-Fly Algorithm for Emptyness of NBAs

```
terminate(true) // Yes, \mathcal{L}(\mathcal{A}) = \emptyset

procedure outer_dfs(q)

mark(q)

if q \in F then inner_dfs(q)

for all successors q' of q do

if q' not marked then outer_dfs(q')
```

```
procedure inner_dfs(q)

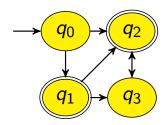
flag(q) // keep flags

for all successors q' of q do

if q' on outer_dfs-stack then terminate(false) // \mathcal{L}(\mathcal{A}) \neq \emptyset

else if q' not flagged then inner_dfs(q')
```

Example (Soundness of Linear On-the-Fly Algorithm)



outer_dfs-stack	inner_dfs-stack	marked	flagged
arepsilon	_	Ø	Ø
q_0	_	$\{q_0\}$	Ø
$q_1 q_0$	_	$\{q_0,q_1\}$	Ø
$q_1 q_0$	q_1	$\{q_0,q_1\}$	$\{q_1\}$
q 1 q 0	$q_2 \; q_1$	$\{q_0,q_1\}$	$\{q_1,q_2\}$
$q_1 q_0$	$q_3 q_2 q_1$	$\{q_0,q_1\}$	$\{q_1,q_2,q_3\}$
$q_2 q_1 q_0$	_	$\{q_0,q_2,q_1\}$	$\{q_1,q_2,q_3\}$
$q_2 q_1 q_0$	q_2	$\{q_0,q_1,q_2\}$	$\{q_1,q_2, q_3\}$
$q_3 q_2 q_1 q_0$	_	$\{q_0, q_1, q_2, q_3\}$	$\{q_1,q_2,q_3\}$

terminate(true)

RT (ICS @ UIBK)

week

21/28

Model Checking On-the-Fly

Correct Linear On-the-Fly Algorithm [Yannakakis et. al]

```
outer_dfs(q_0)

terminate(true) // Yes, \mathcal{L}(\mathcal{A}) = \emptyset

procedure outer_dfs(q)

mark(q)

for all successors q' of q do

if q' not marked then outer_dfs(q')

if q \in F then inner_dfs(q)
```

```
procedure inner_dfs(q)

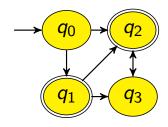
flag(q) // keep flags

for all successors q' of q do

if q' on outer_dfs-stack then terminate(false) // \mathcal{L}(\mathcal{A}) \neq \emptyset

else if q' not flagged then inner_dfs(q')
```

Example (Soundness of Linear On-the-Fly Algorithm)



Model Checking On-the-Fly

Soundness of the Linear On-the-Fly Algorithm

Theorem (Yannakakis et. al)

If the result of the algorithm is false then $\mathcal{L}(\mathcal{A}) \neq \emptyset$ and a word $w \in \mathcal{L}(\mathcal{A})$ can be constructed. Otherwise, $\mathcal{L}(\mathcal{A}) = \emptyset$.

Proof.

Easy direction:

If the algorithm terminates with false then

- outer DFS stack is $q_n q_{n-1} \dots q_0$
- q_n ∈ F
- inner DFS stack is $q_{m+n} q_{m-1+n} \dots q_n$
- q_i is successor of q_{m+n} where $i \leqslant n$
- $\Rightarrow q_0 \dots q_n \dots q_{n+m} q_i \dots q_n \dots q_{n+m} q_i \dots$ is infinite and accepting run
- \Rightarrow Reading the letters of the corresponding transitions yields w

Model Checking On-the-Fly

Model Checking On-the-Fly

- Up to now: Emptyness of NBAs on-the-fly
- Model checking $TS \models \varphi$ is done by checking $\mathcal{L}(\mathcal{B}) = \varnothing$ for NBA $\mathcal{B} = TS \otimes \mathcal{A}_{\neg \varphi}$ (accepts $\mathcal{L}(TS) \cap \mathcal{L}(\neg \varphi)$)
- $TS = (S, \rightarrow, I, AP, L)$ is often large, but can be generated on-the-fly Provided operations:
 - init_states() returns set $I \subseteq S$ of initial states
 - $succ_states(s)$ returns set of successors of s (w.r.t. \rightarrow)
 - label_state(s) returns set $L(s) \in 2^{AP}$ of atomic props. satisfied in s
- $\mathcal{A}_{\neg \varphi} = (\mathcal{Q}, 2^{AP}, q_0, \delta, F)$ is usually small and will be fully constructed
- Problem: How to generate $\mathcal{B} = (\mathcal{Q}', 2^{AP}, q'_0, \delta', F')$ step-by-step? Required operations for emptyness-check:
 - init_state() returns the initial state q_0' of ${\cal B}$
 - succ_states(q) returns set of successors of q (w.r.t. δ')
 - ullet final_state(q) returns whether q is final state of ${\cal B}$

Intersection NBA On-the-Fly

Let $TS = (S, \rightarrow, I, AP, L)$ and $\mathcal{A}_{\neg \varphi} = (\mathcal{Q}, 2^{AP}, q_0, \delta, F)$. Then $\mathcal{B} = TS \otimes \mathcal{A}_{\neg \varphi}$ is defined as

$$((S \times Q) \uplus \{q'_0\}, 2^{AP}, \delta', q'_0, S \times F)$$
 with δ' :

- $\delta'((s,q), A) = \{(s',q') \mid L(s) = A, s \to s', q' \in \delta(q,A)\}$
- $\delta'(q'_0, A) = \{(s', q') \mid s \in I, L(s) = A, s \to s', q' \in \delta(q_0, A)\}$

Thus the required operations of \mathcal{B} can be implemented as follows:

- init_state() = q'_0
- final_state $(\mathsf{q}_0') = \mathsf{false}$ and final_state $((\mathsf{s},\mathsf{q})) = q \in F$
- $succ_states((s,q)) = succ_states(s) \times \underbrace{\delta(q, label_state(s))}_{Compute this first, maybe \varnothing}$ and

 $\mathsf{succ_states}(q_0') = \bigcup_{s \in \mathsf{init_states}()} \mathsf{succ_states}(s) \times \delta(q_0, \mathsf{label_state}(s))$

Nice side-effect: Only reachable part of \mathcal{B} is created!

RT (ICS @ UIBK) week 1 27/28

Model Checking On-the-Fly

Example

