mputational
gic

Model Checking

René Thiemann

Institute of Computer Science

University of Innsbruck

SS 2008

RT (ICS @ UIBK) week 1 1/28

Qutline

@ Organization & Overview

@ Model Checking On-the-Fly

RT (ICS @ UIBK) week 1 2/28

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss08/mc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Organization

o Last lecture = 1st exam

e Some of the lectures are used solely to discuss exercises

e Option: some weeks with 4 hours MC to finish early in semester
= Date of exam is before “exam week”
Literature

o Christel Baier and Joost-Pieter Katoen,
Principles of Model Checking, MIT Press, 2008

e Edmund M. Clarke, Orna Grumberg, and Doron A. Peled,
Model Checking, MIT Press, 1999

Prerequisites
e Basic knowledge of Logic
e Basic knowledge of CTL & LTL
e Basic knowledge of Transition Systems
e Basic knowledge of Buchi Automata

RT (ICS @ UIBK) week 1 4/28

Selection of Topics

Model checking on-the-fly (today)
e S1S

p~calculus

Model checking of real-time systems

RT (ICS @ UIBK) week 1 5/28

Controlling the state-space explosion problem

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

1-Calculus

In CTL: semantics based on least and greatest fixpoint

In p-calculus:

explicit least- and greatest fixpoint operators

easy to implement

many logics can be translated into p-calculus

parallel model checking algorithms available

= p-calculus as efficient basis for model-checking for several logics

RT (ICS @ UIBK) week 1 6/28

S8

Consider the following property:
Between every green and red phase there is at least one orange phase.

Formulating these kinds of properties in LTL is doable, but not intuitive

G (red = X (G —green) V (—green A (X —green U orange))))
Use S1S instead:

Vi1, to: (t1 < to Agreen(ty) Ared(tp)) = Jt3 : t1 < t3 < tp A orange(ts)

e Allows readable and succinct specifications

e One can perform model checking using Biichi automata

RT (ICS @ UIBK) week 1 7/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Model Checking of Real-Time Systems
e Timed Systems {red}

x<y+30,y:=0

{green}

e Timed Specifications
One does not have to wait more than 50 seconds for green:

b =GF <50green

RT (ICS @ UIBK) week 1 8/28

Controlling the State-Space Explosion Problem

Reduce search space in various ways

e Abstraction:
instead of 16-bit integer, only distinguish between even and odd, or
between positive, 0, negative, or between . ..

e Partial order reduction:
if process 1 and process 2 perform operations on local variables,
then schedule process 1 always before process 2

— less interleaving, smaller transition system

RT (ICS @ UIBK) week 1 9/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL Model Checking

Given: Transition system TS, LTL-formula ¢
o TSE ¢ iff L(TS) C L(p)
e Algorithmic Solution (IMC):

Build Non-deterministic Biichi Automata A-, with £(A-,) = L()
Build intersection NBA: B=TS® A,

L(B) = L(TS)\ L(»)

Finally check £(B) = @

RT (ICS @ UIBK) week 1 11/28

Non-deterministic Buchi Automata
e Remember: NBA A is 5-tuple (Q, X, qo, 9, F)

e O: finite set of states

e Y : finite set of letters, input alphabet
e gp € Q: initial state

e §: QXY — 22 transition function
e F C Q: final (accepting) states

Run for w = ag a; a»--- € 2% is infinite sequence qp g1 g2 ... with

gi+1 € 0(qgi,ai) (qi —oh qi+1) forall i € IN

Run goq1 ... gn ... is accepting if for infinitely many i: g; € F

w € X% is accepted by A if there exists an accepting run for w

The accepted language of A:

L(A)={we XI¥| there exists an accepting run for w in A }

RT (ICS @ UIBK) week 1 12/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Emptiness of NBAs

e For checking emptiness, input letters can be ignored
=- Obtain finite graph from NBA
e Since O is finite, each infinite run must end in cycle

o C C Qs cycle iff every state of C is reachable from every state of C
= L(A) # o iff
A has path from initial state to cycle C which contains final state

Solution via Strongly Connected Components

1. Compute SCCs (maximal cycles) of A by Tarjan's algorithm

2. Perform depth first search (DFS) to determine reachable SCCs

3. L(A) # o iff one of the reachable SCCs contains final state

= Linear time complexity (optimal)

— Complete graph is required in step 1

RT (ICS @ UIBK) week 1 13/28

Example

RT (ICS @ UIBK) week 1 14/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Emptiness of NBAs

Solution via Strongly Connected Components
1. Compute SCCs (maximal cycles) of A by Tarjan's algorithm
2. Perform DFS to determine reachable SCCs
3. L(A) # o iff one of the reachable SCCs contains final state
= Linear time complexity (optimal)
= Complete NBA is required for step 1

Naive On-the-Fly Solution
1. Compute reachable final states Rr by outer DFS

2. For each visited g € Rr in step 1 directly check whether it
belongs to a cycle by an inner DFS

= Complete NBA not required
= only parts of NBA have to be generated during DFSs (on-the-fly)

RT (ICS @ UIBK) week 1 15/28

Naive Algorithm

outer_dfs(qp)
terminate(true) // Yes, L(A) = &

procedure outer_dfs(q)
mark(q)
if g € F then inner_dfs(q)
for all successors q’ of g do
if g’ not marked then outer_dfs(q’)

procedure inner_dfs(q)
flag(q) // for each outside call of inner_dfs(q) new flags are used
for all successors q’ of g do
if ¢’ on outer_dfs-stack then terminate(false) // L(A) # @
else if ¢’ not flagged then inner_dfs(q’)

RT (ICS @ UIBK) week 1 16,/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Model Checking On-the-Fly

Example

RT (ICS @ UIBK) week 1 17/28

Example (2n + 1 states)

RT (ICS @ UIBK) week 1 18/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (but > n? steps)

outer_dfs-stack inner_dfs-stack marked flagged
€ — %) —
qo - {qo} -
1 qo - {qo, 1} —
f1 Qo f {90, f1} {h}
f qo Gn---q1h {qo, f1} {fi.q1,.-.,qn}
f qo h {qo, i} {f,q1,- -, qn}
f1 Qo - {qo, f1} -
a1 f1 qo - {q0, f1,q1} -
Qn---Chfl% - {CIO7f17C71,---,C7n} -
f2q0 f2 {QOﬂcl,fbcha--qu} {fQ}
Now for every £, ..., f, one visits all states gy, ..., g, again
RT (ICS @ UIBK) week 1 19/28

Linear On-the-Fly Algorithm for Emptyness of NBAs

outer_dfs(qp)
terminate(true) // Yes, L(A) = &

procedure outer_dfs(q)
mark(q)
if g € F then inner_dfs(q)
for all successors q’ of g do
if g’ not marked then outer_dfs(q’)

procedure inner_dfs(q)
flag(q) // keep flags
for all successors q’ of g do
if ¢’ on outer_dfs-stack then terminate(false) // L(A) # @
else if g’ not flagged then inner_dfs(q’)

RT (ICS @ UIBK) week 1 20/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (Soundness of Linear On-the-Fly Algorithm)

outer_dfs-stack inner_dfs-stack marked flagged
£ — o 2
do — {q0} %)
g1 9o - {qo, a1} Z
di 9o q1 {90, g1} {ai}
q1 Go 92 G1 {90, 91} {q1, 92}
g1 Go 93 G2 G1 {q0, 91} {a1, 2,93}
92 G1 9o - {0, 92,01} {91.92. g3}
g2 1 Go 92 {q0.q1, 02} {q1,92, 03}
93 G2 q1 9o - {90,91,92,93} {91,92,q3}

terminate(true)

RT (ICS @ UIBK) week 1 21/28

Correct Linear On-the-Fly Algorithm [Yannakakis et. al]

outer_dfs(qp)
terminate(true) // Yes, L(A) = &

procedure outer_dfs(q)
mark(q)
for all successors q' of g do
if g’ not marked then outer_dfs(q’)
if g € F then inner_dfs(q)

procedure inner_dfs(q)
flag(q) // keep flags
for all successors q’ of g do
if ¢’ on outer_dfs-stack then terminate(false) // L(A) # @
else if ¢’ not flagged then inner_dfs(q’)

RT (ICS @ UIBK) week 1 22/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (Soundness of Linear On-the-Fly Algorithm)

RT (ICS @ UIBK) week 1 23/28

Soundness of the Linear On-the-Fly Algorithm

Theorem (Yannakakis et. al)

If the result of the algorithm is false then L(A) # @ and a word w € L(A)
can be constructed. Otherwise, L(A) = .

Proof.
Easy direction:
If the algorithm terminates with false then

e outer DFS stack is g, gn,_1...qo
e g, € F
e inner DFS stack is gmin Gm_14n---qn

e q; is successor of g1, where i < n

= qo---Qn---GnimGi---qn---Gnimqi - - . is infinite and accepting
run

— Reading the letters of the corresponding transitions yields w

RT (ICS @ UIBK) week 1 24/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

RT (ICS @ UIBK) week 1 25/28

Model Checking On-the-Fly

e Up to now: Emptyness of NBAs on-the-fly

e Model checking TS |= ¢ is done by checking L(B) = @
for NBA B=TS® A-, (accepts L(TS) N L(—y))

o TS=(S,—,1,AP,L) is often large, but can be generated on-the-fly
Provided operations:
e init_states() returns set | C S of initial states
e succ_states(s) returns set of successors of s (w.r.t. —)

e label_state(s) returns set L(s) € 24 of atomic props. satisfied in s

A== (Q,ZAP, qo, 0, F) is usually small and will be fully constructed
e Problem: How to generate B = (Q', 24", qp, ¢, F') step-by-step?
Required operations for emptyness-check:

e init_state() returns the initial state g of B
e succ states(q) returns set of successors of g (w.r.t. §')
e final state(q) returns whether gq is final state of B

RT (ICS @ UIBK) week 1 26/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Intersection NBA On-the-Fly

Let TS=(S,—,1,AP,L) and A, = (Q,2°" g0, 0, F).
Then B=TS® A-, is defined as

(S x Qw{qe}, 2%, 8, g0, Sx F) with & :

* 0'((s,9),A) ={(s",q') | L(s) = A;s = 5',q" € 6(q, A)}
* 0'(qp, A) ={(s",q') | se . L(s) = As = 5',q €5(q,A)}
Thus the required operations of B can be implemented as follows:
e init_state() = q;
e final_state(qp) = false and final_state((s,q)) = q € F
e succ states((s, q)) = succ_states(s) x §(q, Iabel_state(s)l and

Compute this first, maybe &

succ_states(qg) = Uscinit_states() SUCC-States(s) x 6(qo, label_state(s))
Nice side-effect: Only reachable part of B is created!

RT (ICS @ UIBK) week 1 27/28

Example
0

0 1 1
D D)

RT (ICS @ UIBK) week 1 28/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Organization & Overview
	Model Checking On-the-Fly

