mputational
gic

Model Checking

René Thiemann

Institute of Computer Science

University of Innsbruck

SS 2008

RT (ICS @ UIBK) week 1 1/28

Organization

e Last lecture = 1st exam

e Some of the lectures are used solely to discuss exercises

o Option: some weeks with 4 hours MC to finish early in semester
= Date of exam is before “exam week”
Literature

o Christel Baier and Joost-Pieter Katoen,
Principles of Model Checking, MIT Press, 2008

e Edmund M. Clarke, Orna Grumberg, and Doron A. Peled,
Model Checking, MIT Press, 1999

Prerequisites
¢ Basic knowledge of Logic
e Basic knowledge of CTL & LTL
o Basic knowledge of Transition Systems
o Basic knowledge of Buichi Automata

RT (ICS @ UIBK) week 1 4/28

Outline

@ Organization & Overview

@ Model Checking On-the-Fly

RT (ICS @ UIBK)

Selection of Topics

e S1S

p-calculus

RT (ICS @ UIBK)

week 1

Model checking on-the-fly (today)

Model checking of real-time systems

Controlling the state-space explosion problem

week 1

2/28

5/28


http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss08/mc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

p-Calculus S1S

Consider the following property:
In CTL: semantics based on least and greatest fixpoint Between every green and red phase there is at least one orange phase.

Formulating these kinds of properties in LTL is doable, but not intuitive

In p-calculus: G (red = X (G —green) V (—green A (X —green U orange))))
e explicit least- and greatest fixpoint operators
e easy to implement Use S1S instead:

e many logics can be translated into p-calculus 7 d .
. . . t1,tr (1 < tr Agreen(ty) Ared(tp)) = dt3: 1 < t3 < tr A orange(t
e parallel model checking algorithms available 1Lt (h 2/ 8 (t2) (t2)) 3.1 3 2 ge(ts)

= p-calculus as efficient basis for model-checking for several logics

e Allows readable and succinct specifications

e One can perform model checking using Biichi automata

RT (ICS @ UIBK) week 1 6/28 RT (ICS @ UIBK) week 1 7/28
Model Checking of Real-Time Systems Controlling the State-Space Explosion Problem
e Timed Systems {red}

y>3,x:=0 x<20,y:=0 Reduce search space in various ways

e Abstraction:

instead of 16-bit integer, only distinguish between even and odd, or
between positive, 0, negative, or between ...

e Partial order reduction:
if process 1 and process 2 perform operations on local variables,
then schedule process 1 always before process 2

x<y+30,y:=0

= less interleaving, smaller transition system

{green}
e Timed Specifications L

One does not have to wait more than 50 seconds for green:

® = GF Sgreen

RT (ICS @ UIBK) week 1 8/28 RT (ICS @ UIBK) week 1 9/28


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

LTL Model Checking Non-deterministic Buchi Automata
e Remember: NBA A is 5-tuple (Q, X, qo, 0, F)

Q: finite set of states

2: finite set of letters, input alphabet
go € Q: initial state

§: 0 x X — 22: transition function
F C Q: final (accepting) states

Given: Transition system TS, LTL-formula ¢
o TSE piff L(TS) C L(p)
e Algorithmic Solution (IMC): L
Build Non-deterministic Biichi Automata A-, with £(A-,) = L(y)
Build intersection NBA: B=TS® A-, Gir € 6(aia) (g =2 gisn) forall i € IN

Run for w = ag aj a2 - - - € X% is infinite sequence qo q1 g2 ... with

L(B) = L(TS)\ L(»)
Finally check £(B) = @ ® Run goq1 ... gn ... is accepting if for infinitely many i: g; € F
e w € Y% is accepted by A if there exists an accepting run for w

The accepted language of A:

L(A) = {we X¥| there exists an accepting run for w in A }

RT (ICS @ UIBK) week 1 11/28 RT (ICS @ UIBK) week 1 12/28

Checking Emptiness of NBAs Example

e For checking emptiness, input letters can be ignored
= Obtain finite graph from NBA

e Since Q is finite, each infinite run must end in cycle

e C C Q is cycle iff every state of C is reachable from every state of C i
= L(A) # @ iff
A has path from initial state to cycle C which contains final state
Solution via Strongly Connected Components
1. Compute SCCs (maximal cycles) of A by Tarjan's algorithm .
4

2. Perform depth first search (DFS) to determine reachable SCCs
3. L(A) # @ iff one of the reachable SCCs contains final state
= Linear time complexity (optimal)

= Complete graph is required in step 1

RT (ICS @ UIBK) week 1 13/28 RT (ICS @ UIBK) week 1 14/28


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Checking Emptiness of NBAs

Solution via Strongly Connected Components
1. Compute SCCs (maximal cycles) of A by Tarjan's algorithm
2. Perform DFS to determine reachable SCCs
3. L(A) # o iff one of the reachable SCCs contains final state
= Linear time complexity (optimal)
= Complete NBA is required for step 1

Naive On-the-Fly Solution
1. Compute reachable final states Rg by outer DFS

2. For each visited g € Rg in step 1 directly check whether it
belongs to a cycle by an inner DFS

= Complete NBA not required
= only parts of NBA have to be generated during DFSs (on-the-fly)

ERNER) week 1 15/28

Example

RT (ICS @ UIBK) week 1 17/28

Naive Algorithm

outer_dfs(qo)
terminate(true) // Yes, L(A) =

procedure outer_dfs(q)
mark(q)
if g € F then inner_dfs(q)
for all successors q’ of g do

if ¢’ not marked then outer_dfs(q’)

procedure inner_dfs(q)

flag(q) // for each outside call of inner_dfs(g) new flags are used

for all successors q’ of g do

1%}

if ¢’ on outer_dfs-stack then terminate(false) // L(A) # @

else if ¢’ not flagged then inner_dfs(q’)

RT (ICS @ UIBK)

Example (2n + 1 states)

RT (ICS @ UIBK)

week 1

week 1

16/28

18/28


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (but > n? steps)

outer_dfs-stack inner_dfs-stack marked flagged
€ — %] —
o - {q0} -
fi qo - {90, 1} -
f;l. do ﬁ. {q07fi} {ﬁ.}
fi qo Gn---q1h {q0, i} {fi,qu, ..., a0}
flqO fl {q07fl} {ﬂaqla"'yqn}
fi q0 - {q07fi} -
91 1 o - {q0, i, a1} -
qn...qlflCI() - {QO,fl,CIl,--an} -
f2q0 f2 {q07f;l)f27q17"'?qn} {f2}
Now for every f,, ..., f, one visits all states g1, ..., g, again

RT (ICS @ UIBK)

week 1

Example (Soundness of Linear On-the-Fly Algorithm)

outer_dfs-stack inner_dfs-stack marked flagged
5 — (6] %]
qo - {qo} g
q1 9o - {qo0, a1} 1]
g1 do qi {90, a1} {a1}
g1 do g2 q1 {q0, a1} {1, g2}
q1 Qo B3 G q1 {90, a1} {1, 92,93}
g2 91 qo - {90, 92, a1 } {q1, 92,93}
a2 41 Qo a2 {QO,Q1,Q2} {ql,CIQ,CB}
g3 42 q1 qo - {90, 91,92, 93} {91, 92, 93}

RT (ICS @ UIBK)

terminate(true)

week 1

19/28

21/28

Linear On-the-Fly Algorithm for Emptyness of NBAs

outer_dfs(qo)
terminate(true) // Yes, L(A) = @

procedure outer_dfs(q)
mark(q)
if g € F then inner_dfs(q)
for all successors q’ of g do

if ¢’ not marked then outer_dfs(q’)

procedure inner_dfs(q)

flag(q) // keep flags
for all successors q’ of g do

if ¢’ on outer_dfs-stack then terminate(false) // L(A) # @

RT (ICS @ UIBK)

Correct Linear On-the-Fly Algorithm [Yannakakis et. al]

else if ¢’ not flagged then inner_dfs(q’)

week 1

outer_dfs(qo)
terminate(true) // Yes, L(A) = @

procedure outer_dfs(q)
mark(q)

for all successors q’ of g do

if ¢’ not marked then outer_dfs(q’)

if g € F then inner_dfs(q)

procedure inner_dfs(q)

flag(q) // keep flags

for all successors q’ of g do
if ¢’ on outer_dfs-stack then terminate(false) // L(A) # @

RT (ICS @ UIBK)

else if ¢’ not flagged then inner_dfs(q’)

week 1

20/28

22/28


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example (Soundness of Linear On-the-Fly Algorithm)

RT (ICS @ UIBK)

week 1

RT (ICS @ UIBK) week 1

Soundness of the Linear On-the-Fly Algorithm

Theorem (Yannakakis et. al)

If the result of the algorithm is false then L(A) # @ and a word w € L(.A)
can be constructed. Otherwise, L(A) = @.

Proof.

Easy direction:

If the algorithm terminates with false then

=

=

23/28

RT (ICS @ UIBK)

outer DFS stack is g, gn_1---qo

gn € F

inner DFS stack is ¢min Gm_14n---Gn
g, is successor of g1, where i < n

dGo---Gn---9n+m9qi---qn---qntrm4qi - - .
run

is infinite and accepting

Reading the letters of the corresponding transitions yields w

week 1 24/28

Model Checking On-the-Fly

25/28

RT (ICS @ UIBK)

Up to now: Emptyness of NBAs on-the-fly

Model checking TS = ¢ is done by checking £(B) = &

for NBAB=TS® A, (accepts L(TS) N L(—¢))

TS = (S,—,1,AP, L) is often large, but can be generated on-the-fly
Provided operations:

e init_states() returns set / C S of initial states
e succ_states(s) returns set of successors of s (w.r.t. —)

o label state(s) returns set L(s) € 24P of atomic props. satisfied in s
A, = (9, 24P 40, 4, F) is usually small and will be fully constructed
Problem: How to generate B = (Q,24F g, &', F') step-by-step?
Required operations for emptyness-check:

e init_state() returns the initial state g of B
e succ states(q) returns set of successors of g (w.r.t. §')
e final_state(q) returns whether q is final state of B

week 1 26/28


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

Intersection NBA On-the-Fly
0 0 1
Let TS=(S,—,/,AP,L) and A_, = (Q,2°F qo,6, F). N N
> > &)

Then B = TS® A-, is defined as
(Sx Quw{q},2*. ¢, qp.Sx F)  with &' :
® 5,((57 q)7A) = {(517 ql) | L(S) =As— s/’ q/ € 5(q7 A)} e e e
° 5/(q(,)’A) = {(Sla q/) |sel, L(S) =As—s,q ¢ 5(q07A)} 1 1 1

Thus the required operations of I3 can be implemented as follows:

e init_state() = q;
o final_state(q() = false and final_state((s,q)) =g € F

e succ_states((s, gq)) = succ_states(s) x d(q, label_state(s))
Compute this‘ﬁrst, maybe &
succ_states(q)) = Uscinit states() SUCC-States(s) x 6(qo, label_state(s))

Nice side-effect: Only reachable part of B is created!

and

27/28 RT (ICS @ UIBK) week 1 28/28

RT (ICS @ UIBK) week 1


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Organization & Overview
	Model Checking On-the-Fly

