
Model Checking

René Thiemann

Institute of Computer Science

University of Innsbruck

SS 2008

RT (ICS @ UIBK) week 2 1/45

Outline

First-order logic of 1 Successor

Second-order logic of 1 Successor

Complementation of NBAs

RT (ICS @ UIBK) week 2 2/45

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss08/mc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Model Checking Overview

requirements

Formalizing

property
specification

(LTL, CTL, . . .)

Model Checking

system

Modeling

system model
(transition

system)

satisfied

insufficient
memory

violated +
counterexample

RT (ICS @ UIBK) week 2 3/45

First-order logic of 1 Successor

Limitations of LTL

• No LTL-operator that allows to look in the past
(all LTL-operators only look in the future)

At some moment we see red and some moment before we see orange

• No possibility to fix and compare several moments in time

Green holds until red appears, and at sometime in the future orange is
satisfied. Moreover, the red is later than the orange.

Statements can be encoded to LTL, but formalization is not obvious and
error-prone

• orange U red or (F orange) U X red or F (orange ∧ X F red)

• (green U red)∧F orange∧ ? or (green U red)∧F (orange∧X F red)
or green U (green ∧ orange ∧ X (green U red))

Solution: Use first-order logic which speaks about points in time

• ∃x : red(x) ∧ ∃y : y < x ∧ orange(y)

• ∃x : red(x) ∧ ∀y : (y < x ⇒ green(y)) ∧ ∃z : orange(z) ∧ z < x

RT (ICS @ UIBK) week 2 5/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-order logic of 1 Successor

First-order logic of 1 Successor (F1S)

F1S is like first-order (predicate) logic with the following differences

• The universe is fixed to IN
• Two predefined binary predicates: = and < with the obvious

semantics

• Two function symbols: ’ is the successor function and 0 the constant
for the number 0

• For each atomic proposition a (of the transition system) there is a
unary predicate symbol a
Semantic of these predicates are specified by input word:

For w =
1 0 1 0 1 0 1 0 . . . green

0 0 1 1 0 1 0 1 . . . red

obtain greenw = {0, 2, 4, 6, . . . } and redw = {2, 3, 5, 7, . . . }

RT (ICS @ UIBK) week 2 6/45

First-order logic of 1 Successor

F1S Syntax
Let V = {x , y , . . . } be a set of variables (for time-points)
Let S = {a1, . . . , an} be a set of unary predicate symbols

The set of F1S-terms over V is the smallest set such that

• every variable of V is a term

• 0 is a term

• If t is a term then t ′ is also a term

The set of F1S-formulas over V and S is the smallest set such that

• t1 < t2 and t1 = t2 are formulas for every two terms t1 and t2

• ai(t) is a formula for every term t and 1 6 i 6 n

• If ϕ and ψ are formulas and x ∈ V then ϕ ∧ ψ,¬ϕ, ∃x : ϕ, and ∀x : ϕ
are formulas (connectives ∨,⇒, . . . are derived as usual)

Binding priority: {=, <} A {¬} A {∧,∨} A {⇒,⇔} A {∀,∃}
RT (ICS @ UIBK) week 2 7/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-order logic of 1 Successor

F1S Semantics

Use interpretations α : V → IN to map variables to numbers and
sets Pi ⊆ IN to interpret unary predicates ai.
α is extended to a mapping from terms to IN in the usual way:

• α(0) = 0

• α(t ′) = 1 + α(t)

Then P = P1, . . . ,Pn and α satisfies ϕ, written P |=α ϕ iff

• ϕ = t1 = t2 and α(t1) = α(t2)

• ϕ = t1 < t2 and α(t1) < α(t2)

• ϕ = ai(t) and α(t) ∈ Pi

• ϕ = ¬ψ and P 6|=α ψ

• ϕ = ϕ1 ∧ ϕ2 and P |=α ϕ1 and P |=α ϕ2

• ϕ = ∃x : ψ and P |=α[x :=n] ψ for some n ∈ IN
• ϕ = ∀x : ψ and P |=α[x :=n] ψ for all n ∈ IN

RT (ICS @ UIBK) week 2 8/45

First-order logic of 1 Successor

F1S Semantics continued

ϕ is closed F1S-formula iff ϕ does not contain free variables

For closed formula ϕ and infinite word w ∈ (2n)ω define

w |= ϕ iff Pw |= ϕ where

• Pw = Pw
1 , . . . ,P

w
n

• Pw
i = {m ∈ IN | w [m][i] = 1}

• w [m] is the the letter (vector) A at the m-th position of w

• A[i] is the i-th element of vector A

Moreover, the language of ϕ is

L(ϕ) = {w | w |= ϕ}

RT (ICS @ UIBK) week 2 9/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-order logic of 1 Successor

Relating LTL and F1S

Theorem
For every LTL-formula ϕ there is a closed F1S-formula ltl2f1s(ϕ) such that
L(ϕ) = L(ltl2f1s(ϕ)).

Proof.
Use mapping ltl2f1s : LTL-formulas× F1S-terms→ closed F1S-formulas
and define ltl2f1s(ϕ) = ltl2f1s(ϕ, 0)

• ltl2f1s(ai , t) = ai(t)

• ltl2f1s(¬ϕ, t) = ¬ltl2f1s(ϕ, t)

• ltl2f1s(ϕ ∧ ψ, t) = ltl2f1s(ϕ, t) ∧ ltl2f1s(ϕ, t)

• ltl2f1s(Xϕ, t) = ltl2f1s(ϕ, t ′)

• ltl2f1s(ϕUψ, t) = ∃x : t 6 x ∧ ltl2f1s(ψ, x) ∧
∀y : t 6 y ∧ y < x ⇒ ltl2f1s(ϕ, y)

(x and y must be fresh in last step and t 6 y abbrev. t = y ∨ t < y)

RT (ICS @ UIBK) week 2 10/45

First-order logic of 1 Successor

Proof of Correctness of Construction

RT (ICS @ UIBK) week 2 11/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First-order logic of 1 Successor

Example
Consider ϕ = X (¬a U X (b ∧ c)). Then the translation yields

RT (ICS @ UIBK) week 2 12/45

First-order logic of 1 Successor

Relating LTL and F1S

Theorem
For every closed F1S-formula ϕ there is an LTL-formula f1s2ltl(ϕ) such
that L(ϕ) = L(f1s2ltl(ϕ)).

⇒ LTL and F1S have same expressive power

⇒ write readable, straight-forward specifications in F1S and perform
LTL-model checking afterwards

Theorem (Considering sizes)

• If closed F1S-formula has size m then equivalent LTL-formula can be

constructed which has size O(22...2
m

) (height of tower is m)

• The bound is strict

⇒ Optimization for special cases strongly required

⇒ sometimes hand-written LTL-specifications may be better

RT (ICS @ UIBK) week 2 13/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Second-order logic of 1 Successor

Relating F1S and NBAs

Recall relation between LTL and NBAs

NBAs are strictly more powerful than LTL

(L = {(00)n1ω | n ∈ IN} is NBA-definable, but not by LTL)

With previous results directly achieve

NBAs are strictly more powerful than F1S

Question: Is there a logic which has same expressiveness as NBAs?

Yes, extension of F1S to second-order (S1S)

ϕ = ∃even : even(0) ∧ ∀x : even(x)⇔ ¬even(x ′) ∧
∃y : ∀z : (z < y ⇒ ¬a(z)) ∧ (y 6 z ⇒ a(z)) ∧ even(y)

RT (ICS @ UIBK) week 2 15/45

Second-order logic of 1 Successor

Syntax and Semantic of S1S

Syntax
S1S-formulas are extension of F1S-formulas where now
S = {a1, a2, . . . } are second order variables ranging over subsets of IN.

S1S-formulas are built like F1S-formulas with the following extension:

• If ϕ is a formula then ∃ai : ϕ is also a formula

Write ϕ(a1, . . . , an) to denote that a1, . . . , an are the free second-order
variables of ϕ.

Semantic
Extend F1S-semantic as follows:

• P1, . . . ,Pn−1 |=α ∃an : ϕ iff exists Pn ⊆ IN with P1, . . . ,Pn |=α ϕ

• If ϕ(a1, . . . , an) has no free first-order variables then

L(ϕ) = {w ∈ (2n)ω | Pw |= ϕ}

RT (ICS @ UIBK) week 2 16/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Second-order logic of 1 Successor

Expressiveness of S1S

All-Quantifier

• One can extend S1S by construct ∀a : ϕ with obvious semantics

• This does not increase power since

∀a : ϕ ≡ ¬¬∀a : ϕ ≡ ¬∃a : ¬ϕ

Comparison to NBAs

Theorem (Equivalence of S1S and NBAs, Büchi)

• For every NBA A there is S1S-formula ϕA such that
L(A) = L(ϕA)

• For every S1S-formula ϕ there is NBA Aϕ such that
L(ϕ) = L(Aϕ)

RT (ICS @ UIBK) week 2 17/45

Second-order logic of 1 Successor

Consequences of Büchi’s Theorem

Model Checking for S1S possible as for LTL

• Construct NBA A¬ϕ and check L(TS⊗A¬ϕ) = ∅

Satisfiability of S1S-formulas is decidable
(Given ϕ, construct NBA Aϕ and check L(Aϕ) 6= ∅)

• ϕ1 = ∀x : ∃y : x < y

• ϕ2 = ∀x : ∃y : y < x

• ϕ3 = ∀a : a(0) ∧ (∀x : a(x)⇒ a(x ′))⇒ ∀x : a(x)

• ϕ4 = ∀a : a(0) ∧ (∀x : (∀y : y < x ⇒ a(y))⇒ a(x))⇒ ∀x : a(x)

RT (ICS @ UIBK) week 2 18/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Second-order logic of 1 Successor

Short Distance to Undecidability

Theorem (Undecidability of first-order arithmetic, Gödel)

If one extends F1S by addition (+) and multiplication (·) then satisfiability
of formulas is undecidable.

Corollary

If one allows second-order quantification over relations (and not only over
sets as in S1S), then satisfiability of formulas is undecidable.

RT (ICS @ UIBK) week 2 19/45

Second-order logic of 1 Successor

Proving Büchi’s Theorem, 1. Direction: NBA to S1S

Let A = (Q = {q0, . . . , qm},Σ = 2n, q0, δ,F)

Main ideas:

• ϕA guesses accepting run ρ for input variables a1, . . . , an

• To this end for each qi a second-order variable bi is used

ρ should visit qi at moment x iff bi(x)

• ϕA has to make sure that
• the sets b0, . . . , bm form a partition of IN
• infinitely often a final state is visited
• the partition corresponds to a run w.r.t. δ

RT (ICS @ UIBK) week 2 20/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Second-order logic of 1 Successor

First Direction: From NBA to S1S

Let A = (Q = {q0, . . . , qm},Σ = 2n, q0, δ,F)

Define ϕA as the follows:

• ϕA(a1, . . . , an) = ∃b0 : . . . ∃bm : ψ(a1, . . . , an, b0, . . . , bm) where

ψ = ∀x :
(∨

06i6m bi(x)
)
∧ ¬

∨
i 6=j(bi(x) ∧ bj(x)) ∧ (partition)

∀x : ∃y : x < y ∧
∨

qi∈F bi(y) ∧ (accepting)

b0(0) ∧ ∀x :
∨

qj∈δ(qi ,A)

(
bi(x) ∧ inputA,x ∧ bj(x ′)

)
(run)

• Here, inputA,x = (¬)a1(x) ∧ . . . ∧ (¬)an(x) where the i-th ¬ is present
iff A[i] = 0. Example:

input(0,1,0)T ,x = ¬a1(x) ∧ a2(x) ∧ ¬a3(x)

RT (ICS @ UIBK) week 2 21/45

Second-order logic of 1 Successor

Example

RT (ICS @ UIBK) week 2 22/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Second-order logic of 1 Successor

Second Direction: From S1S to NBA

Perform 3-step translation

1. From S1S to simplified logic S1S0

2. From S1S0 to NBA
(assuming that NBAs are closed under union and complement)

3. Show that NBAs are closed under union and complement

RT (ICS @ UIBK) week 2 23/45

Second-order logic of 1 Successor

S1S0

S1S0: simplified version of S1S

• No first-order quantification, no 0, ′, <,=

• sing predicate, P |= sing(a) iff |Pa| = 1

• succ predicate, P |= succ(a, b) iff Pa = {n} and Pb = {n + 1} for
some n ∈ IN

• ⊆ predicate, P |= a ⊆ b iff Pa ⊆ Pb

Lemma
For each S1S-formula there is an equivalent S1S0-formula.

RT (ICS @ UIBK) week 2 24/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Second-order logic of 1 Successor

First Step: From S1S to S1S0

Proof.

1. Eliminate 0: ϕ[0] ∃x : (ϕ[x] ∧ ¬∃y : y ′ = x)

2. Eliminate iteration of ’: ϕ[t ′′] ∃x : (t ′ = x ∧ ϕ[x ′])

3. Eliminate <: s < t ∀b : (b(s ′) ∧ ∀x : b(x)⇒ b(x ′))⇒ b(t)
(t is in successor closure of s ′)

4. Eliminate ’ in b: b(t ′) ∃x : t ′ = x ∧ b(x)

Obtain S1S-formula with atomic formulas x ′ = y , x = y , and b(x) only
From this obtain S1S0-formula by replacing x by ax:

• ∃x : ϕ ∃ax : sing(ax) ∧ ϕ
• ∀x : ϕ ∀ax : sing(ax)⇒ ϕ

• x ′ = y succ(ax, ay)

• x = y ax ⊆ ay ∧ ay ⊆ ax

• b(x) ax ⊆ b

RT (ICS @ UIBK) week 2 25/45

Second-order logic of 1 Successor

Second Step: From S1S0 to NBA

Lemma
For each S1S0-formula ϕ(a1, . . . , an) there is an equivalent NBA Aϕ.

Proof
We use induction on ϕ. W.l.o.g. the only connectives are ∨,∃,¬.

• ϕ = sing(a): Aϕ =
q0 q1

1

0 0

• ϕ = succ(a1, a2): Aϕ =
q0 q1 q2

(
1

0

) (
0

1

)
(

0

0

) (
0

0

)

• ϕ = a1 ⊆ a2: Aϕ =

q0

(
0

0

)
,

(
0

1

)
,

(
1

1

)
RT (ICS @ UIBK) week 2 26/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Second-order logic of 1 Successor

Proof Continued

• ϕ = ∃an+1 : ψ: By induction obtain Aψ = (Q,Σ′ = 2n+1, q0, δ
′,F).

Obtain Aϕ = (Q,Σ = 2n, q0, δ,F) by dropping last component of
input letters:

δ(q, (b1, . . . , bn)T) = δ′(q, (b1, . . . , bn, 0)) ∪ δ′(q, (b1, . . . , bn, 1))

• ϕ = ¬ψ: By induction obtain Aψ. NBA complementation yields Aϕ.

• ϕ = ψ1 ∨ ψ2: By induction obtain Aψ1 and Aψ2 . First enlarge the
input alphabets of both NBAs to have the same input letters. (Obtain
Bψ1 and Bψ2 with same input alphabet). Then Aϕ is the union NBA
for Bψ1 and Bψ2 .
Enlargement: Let ψ1 have free variables ai, . . . , an and ψ2 has free
variables a1, . . . , ak then Aψ2 = (Q, 2k , q0, δ

′,F). Define
Bψ2 = (Q, 2n, q0, δ,F) where (c1, . . . , cn)T ∈ δ(q, (b1, . . . , bn)T) iff
(c1, . . . , ck)T ∈ δ′(q, (b1, . . . , bk)T). Bψ1 is defined in the same way.

RT (ICS @ UIBK) week 2 27/45

Second-order logic of 1 Successor

Illustration of ∃

RT (ICS @ UIBK) week 2 28/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Second-order logic of 1 Successor

Illustration of Enlargement

RT (ICS @ UIBK) week 2 29/45

Second-order logic of 1 Successor

Third Step: NBA operations

Union

Let A1 = (Q1,Σ, q0,1, δ1,F1) and A2 = (Q2,Σ, q0,2, δ2,F2) be given
where Q1 and Q2 are disjoint.

Idea for union NBA A: Copy both NBAs and add new starting state
which chooses between A1 and A2.

Formally: A = (Q1]Q2] {q0},Σ, δ, q0,F1 ∪ F2) where δ is defined
as follows:

• δ(q0,A) = δ1(q0,1,A) ∪ δ2(q0,2,A)

• δ(q,A) = δ1(q,A) if q ∈ Q1

• δ(q,A) = δ2(q,A) if q ∈ Q2

Obviously: L(A) = L(A1) ∪ L(A2)

RT (ICS @ UIBK) week 2 30/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Complementation of NBAs

Complementation of NFAs

Non-deterministic Finite Automata can be complemented in two steps:

1. Construct equivalent deterministic finite automaton (DFA)

2. Exchange final and non-final states of DFA

q0 q1

odd nr of a’s

a q0 q1

even nr of a’s

a

Both steps do not work with NBAs

1. Not every NBA has a corresponding det. Büchi automaton (DBA)

2. Exchanging final and non-final states of DBA does not yield
complement

RT (ICS @ UIBK) week 2 32/45

Complementation of NBAs

Notations

• a, b, . . . ∈ Σ letters

• u, v ∈ Σ∗ finite words

• U,V ⊆ Σ∗ sets of finite words

• w ∈ Σω infinite word

• W ⊆ Σω set of infinite words

• p, q ∈ Q states of NFA or NBA

• U ·W = {uw ∈ Σω | u ∈ U,w ∈W } concatenation

• Uω = {u0 u1 u2 . . . ∈ Σω | all ui ∈ U} infinite concatenation

• δ extended to function δ̂ : Q× Σ∗ → 2Q

δ̂(q, ε) = {q}
δ̂(q, a u) =

⋃
p∈δ(q,a) δ̂(p, u)

δ̂(q, u) are all states which are reachable when reading u starting in q

RT (ICS @ UIBK) week 2 33/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Complementation of NBAs

Overview NBA Complementation

Complementing Büchi Automaton A with L = L(A)

1. Find family of finitely many sets U1, . . . ,Un ⊆ Σ∗ such that

2. for all i , j : Ui · Uω
j ⊆ L or Ui · Uω

j ∩ L = ∅
Ui · Uω

j is completely in L or not at all

3. every infinite word is contained in some Ui · Uω
j .

4. Then assemble 2ω \ L =
⋃

Ui ·Uω
j ∩L=∅ Ui · Uω

j .

5. Finally, show that everything can be encoded into one NBA.

Note that NBA A = (Q,Σ, q0, δ,F) is fixed in remainder of this lecture.

RT (ICS @ UIBK) week 2 34/45

Complementation of NBAs

Towards Step 1: Transition Profiles

Definition (Transition profile)

Transition profiles are subsets of

{p � q | p, q ∈ Q} ∪ {p �F q | p, q ∈ Q}.

The transition profile of a finite word u is

tp(u) = {p � q | q ∈ δ̂(p, u)}
∪ {p �F q | q ∈ δ̂(p, u), run from p to q contains final state}

Definition (A-equivalence)

We define A-equivalence as a relation ∼A ⊆ Σ∗ × Σ∗:

u ∼A v iff tp(u) = tp(v)

RT (ICS @ UIBK) week 2 35/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Complementation of NBAs

Step 1: A Family of Sets U1, . . . ,Un

Lemma
∼A is an equivalence relation (reflexive, symmetric, transitive).

Lemma
∼A has only finitely many equivalence classes.

Proof.
Obvious, since there are only finitely many transition profiles.

Let there be n equivalence classes of ∼A.

Define U1, . . . ,Un as the equivalence classes of ∼A.

RT (ICS @ UIBK) week 2 36/45

Complementation of NBAs

Example

RT (ICS @ UIBK) week 2 37/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Complementation of NBAs

Step 2: Ui · Uω
j is Completely in L or Not At All

Lemma
If w ∈ Ui · Uω

j ∩ L then Ui · Uω
j ⊆ L.

RT (ICS @ UIBK) week 2 38/45

Complementation of NBAs

Step 3: Every Word is Contained in Some Ui · Uω
j

Recall the following result from graph theory:

Theorem (Infinite version of Ramsey’s Theorem)

Let G be an undirected graph with infinitely many nodes N which is fully
connected, and where every edge is colored with a color between 1 and n.
Then there is an infinite subset M of nodes where all edges between these
nodes have the same color.

RT (ICS @ UIBK) week 2 39/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Complementation of NBAs

Step 4: Assembling 2ω \ L from U1, . . . ,Un

Obviously,

W1 :=
⋃

Ui ·Uω
j ∩L=∅

Ui · Uω
j ⊆ 2ω \ L

With Step 2 we know: Ui · Uω
j is completely in L or not at all. Hence,

W2 :=
⋃

Ui ·Uω
j ∩L6=∅

Ui · Uω
j ⊆ L

Step 3 proves that W1 ∪W2 = 2ω. Hence

2ω \ L = W1 =
⋃

Ui ·Uω
j ∩L=∅

Ui · Uω
j

RT (ICS @ UIBK) week 2 40/45

Complementation of NBAs

Step 5: 2ω \ L can be encoded as NBA

2ω \ L =
⋃

Ui ·Uω
j ∩L=∅

Ui · Uω
j

For encoding of NBA need the following components:

1. Construct NFAs for each Ui

2. Construct NBA for infinite concatenation Uω
j given NFA for Uj

3. Construct NBA for concatenation Ui · Uω
j given NFA for Ui and NBA

for Uω
j

4. Construct NBA for intersection of Ui · Uω
j ∩ L and check resulting

NBA on emptyness

5. Construct final NBA as union
⋃
...Ui · Uω

j

Union and emptyness-check of NBAs have already been presented.
Intersection of NBAs can also easily be done (IMC)

RT (ICS @ UIBK) week 2 41/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Complementation of NBAs

Step 5.1: Construction of NFA for Ui

Recall that Ui = {u | tp(u) = TP} for some transition profile TP.

tp(u) = {p � q | q ∈ δ̂(p, u)}
∪ {p �F q | q ∈ δ̂(p, u), run from p to q contains final state}

• Define Vpq = {u | q ∈ δ̂(p, u)} and
V F

pq = {u | q ∈ δ̂(p, u), run from p to q contains final state}
• Obviously, each Vpq is regular (accepted by NFA (Q,Σ, p, δ, {q}))

⇒ each V F
pq is regular, since V F

pq =
⋃

r∈F Vpr · Vrq

⇒ Ui is regular since

Ui =
⋂

p�q∈TP Vpq ∩
⋂

p�F q∈TP V F
pq

∩
⋂

p�q/∈TP Σ∗ \ Vpq ∩
⋂

p�F q/∈TP Σ∗ \ V F
pq

Here, we used the well-known result that regular languages are closed
under concatenation, union, complement, and intersection
RT (ICS @ UIBK) week 2 42/45

Complementation of NBAs

Step 5.2: Construction of NBA for Uω

Let B′ = (Q′,Σ, q′0, δ′,F ′) be NFA with L(B′) = U.

Main ideas:

• Add new state q′′0 which will be visited between ui and ui+1 in infinite
word u0 u1 u2 . . . ∈ Uω where each ui ∈ U

• One can start in q′′0 and read words as in q′0
• Whenever final state is reached one can jump back to q′′0

In detail: Let B = (Q′] {q′′0},Σ, q′′0 , δ′′, {q′′0}) where δ′′ is defined as:

• δ′′(q′′0 , a) = δ′(q′0, a) ∪ {q′′0 | if F ′ ∩ δ′(q′0, a) 6= ∅}
• δ′′(q , a) = δ′(q , a) ∪ {q′′0 | if F ′ ∩ δ′(q, a) 6= ∅} if q ∈ Q′

Lemma
L(B) = L(B′)ω = Uω.

RT (ICS @ UIBK) week 2 43/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Complementation of NBAs

Proof of Lemma

RT (ICS @ UIBK) week 2 44/45

Complementation of NBAs

Step 5.3: Construction of NBA for Ui · Uω
j

Let NFA A1 = (Q1,Σ, q0,1, δ1,F1) and NBA A2 = (Q2,Σ, q0,2, δ2,F2) be
given such that L(A1) = Ui and L(A2) = Uω

j .
Main ideas:

• Copy both automata

• One can switch from A1 to A2 for every final state of A1

In detail: Let B = (Q1]Q2,Σ, q0,1, δ
′,F2) where δ′ is defined as:

• If q′ ∈ δ1(q, a) ∪ δ2(q, a) then q′ ∈ δ′(q, a)

• If q ∈ F1 and q′ ∈ δ2(q0,2, a) then q′ ∈ δ′(q, a)

• No other states are in δ′(q, a)

Lemma
L(B) = L(A1) · L(A2) = Ui · Uω

j

RT (ICS @ UIBK) week 2 45/45

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	First-order logic of 1 Successor
	Second-order logic of 1 Successor
	Complementation of NBAs

