Model Checking

René Thiemann

Institute of Computer Science

University of Innsbruck

SS 2008

Outline

- First-order logic of 1 Successor
- Second-order logic of 1 Successor
- Complementation of NBAs

Model Checking Overview

Limitations of LTL

- No LTL-operator that allows to look in the past
(all LTL-operators only look in the future)
At some moment we see red and some moment before we see orange
- No possibility to fix and compare several moments in time

Green holds until red appears, and at sometime in the future orange is satisfied. Moreover, the red is later than the orange.

Statements can be encoded to LTL, but formalization is not obvious and error-prone

- orange Ured or (F orange) UX red or F (orange $\wedge X F$ red)
- $($ green U red $) \wedge F$ orange \wedge ? or $\quad($ green U red $) \wedge F($ orange $\wedge X F$ red $)$ or green $U($ green \wedge orange $\wedge X($ green U red $)$)
Solution: Use first-order logic which speaks about points in time
- $\exists x: \operatorname{red}(x) \wedge \exists y: y<x \wedge$ orange (y)
- $\exists x: \operatorname{red}(x) \wedge \forall y:(y<x \Rightarrow \operatorname{green}(y)) \wedge \exists z$: orange $(z) \wedge z<x$

First-order logic of 1 Successor (F1S)

F1S is like first-order (predicate) logic with the following differences

- The universe is fixed to \mathbb{N}
- Two predefined binary predicates: $=$ and $<$ with the obvious semantics
- Two function symbols: ' is the successor function and 0 the constant for the number 0
- For each atomic proposition a (of the transition system) there is a unary predicate symbol a
Semantic of these predicates are specified by input word:

$$
\begin{array}{r}
\text { For } w=\begin{array}{cccccccccc}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & \ldots & \text { green } \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & \ldots & \text { red }
\end{array} \\
\text { obtain green }^{w}=\{0,2,4,6, \ldots\} \text { and } \text { red }^{w}=\{2,3,5,7, \ldots\}
\end{array}
$$

First-order logic of 1 Successor

F1S Syntax

Let $\mathcal{V}=\{x, y, \ldots\}$ be a set of variables (for time-points)
Let $\mathcal{S}=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}$ be a set of unary predicate symbols
The set of F1S-terms over \mathcal{V} is the smallest set such that

- every variable of \mathcal{V} is a term
- 0 is a term
- If t is a term then t^{\prime} is also a term

The set of F 1 S -formulas over \mathcal{V} and \mathcal{S} is the smallest set such that

- $t_{1}<t_{2}$ and $t_{1}=t_{2}$ are formulas for every two terms t_{1} and t_{2}
- $\mathrm{a}_{\mathrm{i}}(t)$ is a formula for every term t and $1 \leqslant i \leqslant n$
- If φ and ψ are formulas and $x \in \mathcal{V}$ then $\varphi \wedge \psi, \neg \varphi, \exists x: \varphi$, and $\forall x: \varphi$ are formulas (connectives $\vee, \Rightarrow, \ldots$ are derived as usual)

Binding priority: $\{=,<\} \sqsupset\{\neg\} \sqsupset\{\wedge, \vee\} \sqsupset\{\Rightarrow, \Leftrightarrow\} \sqsupset\{\forall, \exists\}$

F1S Semantics

Use interpretations $\alpha: \mathcal{V} \rightarrow \mathbb{N}$ to map variables to numbers and sets $P_{i} \subseteq \mathbb{N}$ to interpret unary predicates a_{i}.
α is extended to a mapping from terms to \mathbb{N} in the usual way:

- $\alpha(0)=0$
- $\alpha\left(t^{\prime}\right)=1+\alpha(t)$

Then $\mathcal{P}=P_{1}, \ldots, P_{n}$ and α satisfies φ, written $\mathcal{P} \models_{\alpha} \varphi$ iff

- $\varphi=t_{1}=t_{2}$ and $\alpha\left(t_{1}\right)=\alpha\left(t_{2}\right)$
- $\varphi=t_{1}<t_{2}$ and $\alpha\left(t_{1}\right)<\alpha\left(t_{2}\right)$
- $\varphi=\mathrm{a}_{\mathrm{i}}(t)$ and $\alpha(t) \in P_{i}$
- $\varphi=\neg \psi$ and $\mathcal{P} \not \vDash_{\alpha} \psi$
- $\varphi=\varphi_{1} \wedge \varphi_{2}$ and $\mathcal{P} \models_{\alpha} \varphi_{1}$ and $\mathcal{P} \models_{\alpha} \varphi_{2}$
- $\varphi=\exists x: \psi$ and $\mathcal{P} \models_{\alpha[x:=n]} \psi$ for some $n \in \mathbb{N}$
- $\varphi=\forall x: \psi$ and $\mathcal{P} \models_{\alpha[x:=n]} \psi$ for all $n \in \mathbb{N}$

First-order logic of 1 Successor

F1S Semantics continued

φ is closed F1S-formula iff φ does not contain free variables
For closed formula φ and infinite word $w \in\left(2^{n}\right)^{\omega}$ define

$$
w \models \varphi \text { iff } \mathcal{P}^{w} \models \varphi \quad \text { where }
$$

- $\mathcal{P}_{w}=P_{1}^{w}, \ldots, P_{n}^{w}$
- $P_{i}^{w}=\{m \in \mathbb{N} \mid w[m][i]=1\}$
- $w[m]$ is the the letter (vector) A at the m-th position of w
- $A[i]$ is the i-th element of vector A

Moreover, the language of φ is

$$
\mathcal{L}(\varphi)=\{w \mid w \models \varphi\}
$$

Relating LTL and F1S

Theorem

For every LTL-formula φ there is a closed F 1 S -formula $\operatorname{|t|} 1_{2} \mathrm{f1s}(\varphi)$ such that $\mathcal{L}(\varphi)=\mathcal{L}\left(|\mathrm{t}|_{2} f 1 \mathrm{~s}(\varphi)\right)$.

Proof.
Use mapping $\mid t_{2} l_{2}$ 1s : LTL-formulas \times F1S-terms \rightarrow closed F1S-formulas and define $\operatorname{ItI}_{2} \mathrm{f1s}(\varphi)=|\operatorname{tt}|_{2} \mathrm{f1s}(\varphi, 0)$

- $\mid \mathrm{tl}_{2} \mathrm{f} 1 \mathrm{~s}\left(\mathrm{a}_{i}, t\right)=\mathrm{a}_{\mathrm{i}}(t)$
- $|t|_{2} \mathrm{f1s}(\neg \varphi, t)=\neg \mid \mathrm{tt}_{2} \mathrm{f1s}(\varphi, t)$
- $\operatorname{Itl}_{2} \mathrm{f1s}(\varphi \wedge \psi, t)=\left.|\operatorname{tt}|_{2} \mathrm{f1s}(\varphi, t) \wedge \operatorname{|t|}\right|_{2} \mathrm{f1s}(\varphi, t)$
- $\left|\mathrm{tt}_{2} \mathrm{f1s}(\mathrm{X} \varphi, t)=\right| \mathrm{tl}_{2} \mathrm{f1s}\left(\varphi, t^{\prime}\right)$
- $\operatorname{ttl}_{2} f 1 \mathrm{Is}(\varphi \cup \psi, t)=\exists x: t \leqslant x \wedge \mid \mathrm{tt}_{2} f 1 \mathrm{~s}(\psi, x) \wedge$

$$
\forall y: t \leqslant y \wedge y<x \Rightarrow|\operatorname{tt}|_{2} f 1 \mathrm{~s}(\varphi, y)
$$

(x and y must be fresh in last step and $t \leqslant y$ abbrev. $t=y \vee t<y$)

Proof of Correctness of Construction

Example

Consider $\varphi=\mathrm{X}(\neg a \cup \mathrm{X}(b \wedge c))$. Then the translation yields

Relating LTL and F1S

Theorem
 that $\mathcal{L}(\varphi)=\mathcal{L}\left(f 1 \mathrm{~s}_{2} \mid \mathrm{t\mid}(\varphi)\right)$.
\Rightarrow LTL and F1S have same expressive power
\Rightarrow write readable, straight-forward specifications in F1S and perform LTL-model checking afterwards

Theorem (Considering sizes)

- If closed F1S-formula has size m then equivalent LTL-formula can be constructed which has size $\mathcal{O}\left(2^{2 \ldots .^{m}}\right.$) (height of tower is m)
- The bound is strict
\Rightarrow Optimization for special cases strongly required
\Rightarrow sometimes hand-written LTL-specifications may be better

Relating F1S and NBAs

Recall relation between LTL and NBAs

> NBAs are strictly more powerful than LTL $\left(\mathcal{L}=\left\{(00)^{n} 1^{\omega} \mid n \in \mathbb{N}\right\}\right.$ is NBA-definable, but not by LTL)

With previous results directly achieve
NBAs are strictly more powerful than F1S
Question: Is there a logic which has same expressiveness as NBAs?
Yes, extension of F1S to second-order (S1S)

$$
\begin{aligned}
& \varphi=\exists \operatorname{even}: \operatorname{even}(0) \wedge \forall x: \operatorname{even}(x) \Leftrightarrow \neg \operatorname{even}\left(x^{\prime}\right) \wedge \\
& \quad \exists y: \forall z:(z<y \Rightarrow \neg a(z)) \wedge(y \leqslant z \Rightarrow a(z)) \wedge \operatorname{even}(y)
\end{aligned}
$$

Syntax and Semantic of S1S

Syntax
S1S-formulas are extension of F1S-formulas where now
$\mathcal{S}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots\right\}$ are second order variables ranging over subsets of \mathbb{N}.
S1S-formulas are built like F1S-formulas with the following extension:

- If φ is a formula then $\exists a_{i}: \varphi$ is also a formula

Write $\varphi\left(a_{1}, \ldots, a_{n}\right)$ to denote that a_{1}, \ldots, a_{n} are the free second-order variables of φ.

Semantic
Extend F1S-semantic as follows:

- $P_{1}, \ldots, P_{n-1} \models_{\alpha} \exists a_{n}: \varphi$ iff exists $P_{n} \subseteq \mathbb{N}$ with $P_{1}, \ldots, P_{n} \models_{\alpha} \varphi$
- If $\varphi\left(a_{1}, \ldots, a_{n}\right)$ has no free first-order variables then

$$
\mathcal{L}(\varphi)=\left\{w \in\left(2^{n}\right)^{\omega} \mid \mathcal{P}^{w} \models \varphi\right\}
$$

Expressiveness of S1S

All-Quantifier

- One can extend S1S by construct $\forall a: \varphi$ with obvious semantics
- This does not increase power since

$$
\forall \mathrm{a}: \varphi \quad \equiv \quad \neg \neg \forall \mathrm{a}: \varphi \quad \equiv \quad \neg \exists \mathrm{a}: \neg \varphi
$$

Comparison to NBAs
Theorem (Equivalence of S1S and NBAs, Büchi)

- For every $N B A \mathcal{A}$ there is $S 1 S$-formula $\varphi_{\mathcal{A}}$ such that $\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\varphi_{\mathcal{A}}\right)$
- For every S1S-formula φ there is NBA \mathcal{A}_{φ} such that $\mathcal{L}(\varphi)=\mathcal{L}\left(\mathcal{A}_{\varphi}\right)$

Consequences of Büchi's Theorem

Model Checking for S1S possible as for LTL

- Construct NBA $\mathcal{A}_{\neg \varphi}$ and check $\mathcal{L}\left(T S \otimes \mathcal{A}_{\neg \varphi}\right)=\varnothing$

Satisfiability of S1S-formulas is decidable (Given φ, construct NBA \mathcal{A}_{φ} and check $\mathcal{L}\left(\mathcal{A}_{\varphi}\right) \neq \varnothing$)

- $\varphi_{1}=\forall x: \exists y: x<y$
- $\varphi_{2}=\forall x: \exists y: y<x$
- $\varphi_{3}=\forall \mathrm{a}: \mathrm{a}(0) \wedge\left(\forall x: \mathrm{a}(x) \Rightarrow \mathrm{a}\left(x^{\prime}\right)\right) \Rightarrow \forall x: \mathrm{a}(x)$
- $\varphi_{4}=\forall \mathrm{a}: \mathrm{a}(0) \wedge(\forall x:(\forall y: y<x \Rightarrow \mathrm{a}(y)) \Rightarrow \mathrm{a}(x)) \Rightarrow \forall x: a(x)$

Short Distance to Undecidability

Theorem (Undecidability of first-order arithmetic, Gödel)
If one extends F1S by addition (+) and multiplication (.) then satisfiability of formulas is undecidable.

Corollary

If one allows second-order quantification over relations (and not only over sets as in S1S), then satisfiability of formulas is undecidable.

Proving Büchi's Theorem, 1. Direction: NBA to S1S

Let $\mathcal{A}=\left(\mathcal{Q}=\left\{q_{0}, \ldots, q_{m}\right\}, \Sigma=2^{n}, q_{0}, \delta, F\right)$
Main ideas:

- $\varphi_{\mathcal{A}}$ guesses accepting run ρ for input variables a_{1}, \ldots, a_{n}
- To this end for each q_{i} a second-order variable b_{i} is used ρ should visit q_{i} at moment x iff $b_{i}(x)$
- $\varphi_{\mathcal{A}}$ has to make sure that
- the sets b_{0}, \ldots, b_{m} form a partition of \mathbb{N}
- infinitely often a final state is visited
- the partition corresponds to a run w.r.t. δ

First Direction: From NBA to S1S
Let $\mathcal{A}=\left(\mathcal{Q}=\left\{q_{0}, \ldots, q_{m}\right\}, \Sigma=2^{n}, q_{0}, \delta, F\right)$
Define $\varphi_{\mathcal{A}}$ as the follows:

- $\varphi_{\mathcal{A}}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)=\exists \mathrm{b}_{0}: \ldots \exists \mathrm{b}_{\mathrm{m}}: \psi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}, \mathrm{b}_{0}, \ldots, \mathrm{~b}_{\mathrm{m}}\right)$ where

$$
\begin{aligned}
\psi= & \forall x:\left(\bigvee_{0 \leqslant i \leqslant m} \mathrm{~b}_{\mathrm{i}}(x)\right) \wedge \neg \bigvee_{i \neq j}\left(\mathrm{~b}_{\mathrm{i}}(x) \wedge \mathrm{b}_{j}(x)\right) \wedge & \text { (partition) } \\
& \forall x: \exists y: x<y \wedge \bigvee_{q_{i} \in F} \mathrm{~b}_{\mathrm{i}}(y) \wedge & \text { (accepting) } \\
& \mathrm{b}_{0}(0) \wedge \forall x: \bigvee_{q_{j} \in \delta\left(q_{i}, A\right)}\left(\mathrm{b}_{\mathrm{i}}(x) \wedge \text { input }_{A, x} \wedge \mathrm{~b}_{\mathrm{j}}\left(x^{\prime}\right)\right) & \text { (run) }
\end{aligned}
$$

- Here, input ${ }_{A, x}=(\neg) \mathrm{a}_{1}(x) \wedge \ldots \wedge(\neg) \mathrm{a}_{\mathrm{n}}(x)$ where the i-th \neg is present iff $A[i]=0$. Example:

$$
\operatorname{input}_{(0,1,0)^{T}, x}=\neg \mathrm{a}_{1}(x) \wedge \mathrm{a}_{2}(x) \wedge \neg \mathrm{a}_{3}(x)
$$

Example

Second Direction: From S1S to NBA

Perform 3-step translation

1. From S 1 S to simplified logic $\mathrm{S}_{1} \mathrm{~S}_{0}$
2. From $\mathrm{S}_{1} \mathrm{~S}_{0}$ to NBA
(assuming that NBAs are closed under union and complement)
3. Show that NBAs are closed under union and complement

S1S0

$\mathrm{S}_{1} \mathrm{~S}_{0}$: simplified version of S 1 S

- No first-order quantification, no $0,{ }^{\prime},<,=$
- sing predicate, $\mathcal{P} \models \operatorname{sing}(a)$ iff $\left|P_{a}\right|=1$
- succ predicate, $\mathcal{P} \models \operatorname{succ}(\mathrm{a}, \mathrm{b})$ iff $P_{a}=\{n\}$ and $P_{b}=\{n+1\}$ for some $n \in \mathbb{N}$
- \subseteq predicate, $\mathcal{P} \models \mathrm{a} \subseteq \mathrm{b}$ iff $P_{a} \subseteq P_{b}$

Lemma
For each S1S-formula there is an equivalent S1So-formula.

First Step: From S1S to S1S0

Proof.

1. Eliminate 0: $\varphi[0] \rightsquigarrow \exists x:\left(\varphi[x] \wedge \neg \exists y: y^{\prime}=x\right)$
2. Eliminate iteration of ' : $\varphi\left[t^{\prime \prime}\right] \rightsquigarrow \exists x:\left(t^{\prime}=x \wedge \varphi\left[x^{\prime}\right]\right)$
3. Eliminate $<: s<t \rightsquigarrow \forall \mathrm{~b}:\left(\mathrm{b}\left(s^{\prime}\right) \wedge \forall x: \mathrm{b}(x) \Rightarrow \mathrm{b}\left(x^{\prime}\right)\right) \Rightarrow \mathrm{b}(t)$ (t is in successor closure of s^{\prime})
4. Eliminate ' in $\mathrm{b}: \mathrm{b}\left(t^{\prime}\right) \rightsquigarrow \exists x: t^{\prime}=x \wedge \mathrm{~b}(x)$

Obtain S1S-formula with atomic formulas $x^{\prime}=y, x=y$, and $\mathrm{b}(x)$ only From this obtain $\mathrm{Sl}_{0}-$-formula by replacing x by a_{x} :

- $\exists x: \varphi \leadsto \exists a_{x}: \operatorname{sing}\left(\mathrm{a}_{\mathrm{x}}\right) \wedge \varphi$
- $\forall x: \varphi \leadsto \forall a_{x}: \operatorname{sing}\left(\mathrm{a}_{\mathrm{x}}\right) \Rightarrow \varphi$
- $x^{\prime}=y \rightsquigarrow \operatorname{succ}\left(a_{x}, a_{y}\right)$
- $x=y \rightsquigarrow a_{x} \subseteq a_{y} \wedge a_{y} \subseteq a_{x}$
- $b(x) \rightsquigarrow a_{x} \subseteq b$

Second Step: From S1S o to NBA

Lemma
For each $S 1 S_{0}$-formula $\varphi\left(a_{1}, \ldots, a_{n}\right)$ there is an equivalent $N B A \mathcal{A}_{\varphi}$.
Proof
We use induction on φ. W.I.o.g. the only connectives are \vee, \exists, \neg.

- $\varphi=\operatorname{sing}(\mathrm{a}): \mathcal{A}_{\varphi}=$

$$
\rightarrow\binom{0}{0}
$$

$\rightarrow(90)\binom{0}{0},\binom{0}{1},\binom{1}{1}$

Proof Continued

- $\varphi=\exists a_{\mathrm{n}+1}: \psi$: By induction obtain $\mathcal{A}_{\psi}=\left(\mathcal{Q}, \Sigma^{\prime}=2^{n+1}, q_{0}, \delta^{\prime}, F\right)$. Obtain $\mathcal{A}_{\varphi}=\left(\mathcal{Q}, \Sigma=2^{n}, q_{0}, \delta, F\right)$ by dropping last component of input letters:

$$
\delta\left(q,\left(b_{1}, \ldots, b_{n}\right)^{T}\right)=\delta^{\prime}\left(q,\left(b_{1}, \ldots, b_{n}, 0\right)\right) \cup \delta^{\prime}\left(q,\left(b_{1}, \ldots, b_{n}, 1\right)\right)
$$

- $\varphi=\neg \psi$: By induction obtain \mathcal{A}_{ψ}. NBA complementation yields \mathcal{A}_{φ}.
- $\varphi=\psi_{1} \vee \psi_{2}$: By induction obtain $\mathcal{A}_{\psi_{1}}$ and $\mathcal{A}_{\psi_{2}}$. First enlarge the input alphabets of both NBAs to have the same input letters. (Obtain $\mathcal{B}_{\psi_{1}}$ and $\mathcal{B}_{\psi_{2}}$ with same input alphabet). Then \mathcal{A}_{φ} is the union NBA for $\mathcal{B}_{\psi_{1}}$ and $\mathcal{B}_{\psi_{2}}$.
Enlargement: Let ψ_{1} have free variables a_{i}, \ldots, a_{n} and ψ_{2} has free variables $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}$ then $\mathcal{A}_{\psi_{2}}=\left(\mathcal{Q}, 2^{k}, q_{0}, \delta^{\prime}, F\right)$. Define $\mathcal{B}_{\psi_{2}}=\left(\mathcal{Q}, 2^{n}, q_{0}, \delta, F\right)$ where $\left(c_{1}, \ldots, c_{n}\right)^{T} \in \delta\left(q,\left(b_{1}, \ldots, b_{n}\right)^{T}\right)$ iff $\left(c_{1}, \ldots, c_{k}\right)^{T} \in \delta^{\prime}\left(q,\left(b_{1}, \ldots, b_{k}\right)^{T}\right) . \mathcal{B}_{\psi_{1}}$ is defined in the same way.

Illustration of \exists

Third Step: NBA operations

Union

Let $\mathcal{A}_{1}=\left(\mathcal{Q}_{1}, \Sigma, q_{0,1}, \delta_{1}, F_{1}\right)$ and $\mathcal{A}_{2}=\left(\mathcal{Q}_{2}, \Sigma, q_{0,2}, \delta_{2}, F_{2}\right)$ be given where \mathcal{Q}_{1} and \mathcal{Q}_{2} are disjoint.
Idea for union NBA \mathcal{A} : Copy both NBAs and add new starting state which chooses between \mathcal{A}_{1} and \mathcal{A}_{2}.
Formally: $\mathcal{A}=\left(\mathcal{Q}_{1} \uplus \mathcal{Q}_{2} \uplus\left\{q_{0}\right\}, \Sigma, \delta, q_{0}, F_{1} \cup F_{2}\right)$ where δ is defined as follows:

- $\delta\left(q_{0}, A\right)=\delta_{1}\left(q_{0,1}, A\right) \cup \delta_{2}\left(q_{0,2}, A\right)$
- $\delta(q, A)=\delta_{1}(q, A)$ if $q \in \mathcal{Q}_{1}$
- $\delta(q, A)=\delta_{2}(q, A)$ if $q \in \mathcal{Q}_{2}$

Obviously: $\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}_{1}\right) \cup \mathcal{L}\left(\mathcal{A}_{2}\right)$

Complementation of NFAs

Non-deterministic Finite Automata can be complemented in two steps:

1. Construct equivalent deterministic finite automaton (DFA)
2. Exchange final and non-final states of DFA

Both steps do not work with NBAs

1. Not every NBA has a corresponding det. Büchi automaton (DBA)
2. Exchanging final and non-final states of DBA does not yield complement

Complementation of NBAs

Notations

- $a, b, \ldots \in \Sigma$
letters
- $u, v \in \Sigma^{*}$
finite words
- $U, V \subseteq \Sigma^{*}$
- $w \in \Sigma^{\omega}$
- $W \subseteq \Sigma^{\omega}$
- $p, q \in \mathcal{Q}$
- $U \cdot W=\left\{u w \in \Sigma^{\omega} \mid u \in U, w \in W\right\}$
- $U^{\omega}=\left\{u_{0} u_{1} u_{2} \ldots \in \Sigma^{\omega} \mid\right.$ all $\left.u_{i} \in U\right\}$ set of infinite words states of NFA or NBA
concatenation
infinite concatenation
- δ extended to function $\hat{\delta}: \mathcal{Q} \times \Sigma^{*} \rightarrow 2^{\mathcal{Q}}$

$$
\begin{aligned}
\hat{\delta}(q, \varepsilon) & =\{q\} \\
\hat{\delta}(q, a u) & =\bigcup_{p \in \delta(q, a)} \hat{\delta}(p, u)
\end{aligned}
$$

$\hat{\delta}(q, u)$ are all states which are reachable when reading u starting in q

Overview NBA Complementation

Complementing Büchi Automaton \mathcal{A} with $\mathcal{L}=\mathcal{L}(\mathcal{A})$

1. Find family of finitely many sets $U_{1}, \ldots, U_{n} \subseteq \Sigma^{*}$ such that
2. for all $i, j: U_{i} \cdot U_{j}^{\omega} \subseteq \mathcal{L}$ or $U_{i} \cdot U_{j}^{\omega} \cap \mathcal{L}=\varnothing$ $U_{i} \cdot U_{j}^{\omega}$ is completely in \mathcal{L} or not at all
3. every infinite word is contained in some $U_{i} \cdot U_{j}^{\omega}$.
4. Then assemble $2^{\omega} \backslash \mathcal{L}=\bigcup_{U_{i} \cdot U_{j}^{\omega} \cap \mathcal{L}=\varnothing} U_{i} \cdot U_{j}^{\omega}$.
5. Finally, show that everything can be encoded into one NBA.

Note that $\operatorname{NBA} \mathcal{A}=\left(\mathcal{Q}, \Sigma, q_{0}, \delta, F\right)$ is fixed in remainder of this lecture.

Towards Step 1: Transition Profiles

Definition (Transition profile)
Transition profiles are subsets of

$$
\{p \rightarrow q \mid p, q \in \mathcal{Q}\} \cup\{p \rightarrow F q \mid p, q \in \mathcal{Q}\} .
$$

The transition profile of a finite word u is

$$
\begin{aligned}
\operatorname{tp}(u) & =\{p \rightarrow q \mid q \in \hat{\delta}(p, u)\} \\
& \cup\{p \rightarrow F q \mid q \in \hat{\delta}(p, u), \text { run from } p \text { to } q \text { contains final state }\}
\end{aligned}
$$

Definition (\mathcal{A}-equivalence)
We define \mathcal{A}-equivalence as a relation $\sim_{\mathcal{A}} \subseteq \Sigma^{*} \times \Sigma^{*}$:

$$
u \sim_{\mathcal{A}} v \quad \text { iff } \quad \operatorname{tp}(u)=\operatorname{tp}(v)
$$

Step 1: A Family of Sets U_{1}, \ldots, U_{n}

Lemma
$\sim_{\mathcal{A}}$ is an equivalence relation (reflexive, symmetric, transitive).
Lemma
$\sim_{\mathcal{A}}$ has only finitely many equivalence classes.
Proof.
Obvious, since there are only finitely many transition profiles.
Let there be n equivalence classes of $\sim_{\mathcal{A}}$.
Define U_{1}, \ldots, U_{n} as the equivalence classes of $\sim_{\mathcal{A}}$.

Example

Step 2: $U_{i} \cdot U_{j}^{\omega}$ is Completely in \mathcal{L} or Not At All
Lemma
If $w \in U_{i} \cdot U_{j}^{\omega} \cap \mathcal{L}$ then $U_{i} \cdot U_{j}^{\omega} \subseteq \mathcal{L}$.

Step 3: Every Word is Contained in Some $U_{i} \cdot U_{j}^{\omega}$
Recall the following result from graph theory:
Theorem (Infinite version of Ramsey's Theorem)
Let \mathcal{G} be an undirected graph with infinitely many nodes N which is fully connected, and where every edge is colored with a color between 1 and n. Then there is an infinite subset M of nodes where all edges between these nodes have the same color.

Step 4: Assembling $2^{\omega} \backslash \mathcal{L}$ from U_{1}, \ldots, U_{n}
Obviously,

$$
W_{1}:=\bigcup_{U_{i} \cdot U_{j}^{\omega} \cap \mathcal{L}=\varnothing} U_{i} \cdot U_{j}^{\omega} \subseteq 2^{\omega} \backslash \mathcal{L}
$$

With Step 2 we know: $U_{i} \cdot U_{j}^{\omega}$ is completely in \mathcal{L} or not at all. Hence,

$$
W_{2}:=\bigcup_{U_{i} \cdot U_{j}^{\omega} \cap \mathcal{L} \neq \varnothing} U_{i} \cdot U_{j}^{\omega} \subseteq \mathcal{L}
$$

Step 3 proves that $W_{1} \cup W_{2}=2^{\omega}$. Hence

$$
2^{\omega} \backslash \mathcal{L}=W_{1}=\bigcup_{U_{i} \cdot U_{j}^{\omega} \cap \mathcal{L}=\varnothing} U_{i} \cdot U_{j}^{\omega}
$$

Step 5: $2^{\omega} \backslash \mathcal{L}$ can be encoded as NBA

$$
2^{\omega} \backslash \mathcal{L}=\bigcup_{U_{i} \cdot U_{j}^{\omega} \cap \mathcal{L}=\varnothing} U_{i} \cdot U_{j}^{\omega}
$$

For encoding of NBA need the following components:

1. Construct NFAs for each U_{i}
2. Construct NBA for infinite concatenation U_{j}^{ω} given NFA for U_{j}
3. Construct NBA for concatenation $U_{i} \cdot U_{j}^{\omega}$ given NFA for U_{i} and NBA for U_{j}^{ω}
4. Construct NBA for intersection of $U_{i} \cdot U_{j}^{\omega} \cap \mathcal{L}$ and check resulting NBA on emptyness
5. Construct final NBA as union $\cup \ldots U_{i} \cdot U_{j}^{\omega}$

Union and emptyness-check of NBAs have already been presented. Intersection of NBAs can also easily be done (IMC)

Step 5.1: Construction of NFA for U_{i}

Recall that $U_{i}=\{u \mid t p(u)=T P\}$ for some transition profile $T P$.

$$
\begin{aligned}
\operatorname{tp}(u) & =\{p \rightarrow q \mid q \in \hat{\delta}(p, u)\} \\
& \cup\{p \rightarrow F q \mid q \in \hat{\delta}(p, u), \text { run from } p \text { to } q \text { contains final state }\}
\end{aligned}
$$

- Define $V_{p q}=\{u \mid q \in \hat{\delta}(p, u)\}$ and $V_{p q}^{F}=\{u \mid q \in \hat{\delta}(p, u)$, run from p to q contains final state $\}$
- Obviously, each $V_{p q}$ is regular (accepted by $\left.\operatorname{NFA}(\mathcal{Q}, \Sigma, p, \delta,\{q\})\right)$
\Rightarrow each $V_{p q}^{F}$ is regular, since $V_{p q}^{F}=\bigcup_{r \in F} V_{p r} \cdot V_{r q}$
$\Rightarrow U_{i}$ is regular since

$$
\begin{array}{rll}
U_{i} & =\bigcap_{p \rightarrow q \in T P} V_{p q} & \cap \\
& \bigcap_{p \rightarrow F q \in T P} V_{p q}^{F} \\
& \cap \bigcap_{p \rightarrow q \notin T P} \Sigma^{*} \backslash V_{p q} & \cap
\end{array}
$$

Here, we used the well-known result that regular languages are closed under concatenation, union, complement, and intersection

Complementation of NBAs
Step 5.2: Construction of NBA for U^{ω}
Let $\mathcal{B}^{\prime}=\left(\mathcal{Q}^{\prime}, \Sigma, q_{0}^{\prime}, \delta^{\prime}, F^{\prime}\right)$ be NFA with $\mathcal{L}\left(\mathcal{B}^{\prime}\right)=U$.
Main ideas:

- Add new state $q_{0}^{\prime \prime}$ which will be visited between u_{i} and u_{i+1} in infinite word $u_{0} u_{1} u_{2} \ldots \in U^{\omega}$ where each $u_{i} \in U$
- One can start in $q_{0}^{\prime \prime}$ and read words as in q_{0}^{\prime}
- Whenever final state is reached one can jump back to $q_{0}^{\prime \prime}$

In detail: Let $\mathcal{B}=\left(\mathcal{Q}^{\prime} \uplus\left\{q_{0}^{\prime \prime}\right\}, \Sigma, q_{0}^{\prime \prime}, \delta^{\prime \prime},\left\{q_{0}^{\prime \prime}\right\}\right)$ where $\delta^{\prime \prime}$ is defined as:

- $\delta^{\prime \prime}\left(q_{0}^{\prime \prime}, a\right)=\delta^{\prime}\left(q_{0}^{\prime}, a\right) \cup\left\{q_{0}^{\prime \prime} \mid\right.$ if $\left.F^{\prime} \cap \delta^{\prime}\left(q_{0}^{\prime}, a\right) \neq \varnothing\right\}$
- $\delta^{\prime \prime}(q, a)=\delta^{\prime}(q, a) \cup\left\{q_{0}^{\prime \prime} \mid\right.$ if $\left.F^{\prime} \cap \delta^{\prime}(q, a) \neq \varnothing\right\} \quad$ if $q \in \mathcal{Q}^{\prime}$

Lemma
$\mathcal{L}(\mathcal{B})=\mathcal{L}\left(\mathcal{B}^{\prime}\right)^{\omega}=U^{\omega}$.

Proof of Lemma

Step 5.3: Construction of NBA for $U_{i} \cdot U_{j}^{\omega}$
Let NFA $\mathcal{A}_{1}=\left(\mathcal{Q}_{1}, \Sigma, q_{0,1}, \delta_{1}, F_{1}\right)$ and NBA $\mathcal{A}_{2}=\left(\mathcal{Q}_{2}, \Sigma, q_{0,2}, \delta_{2}, F_{2}\right)$ be given such that $\mathcal{L}\left(\mathcal{A}_{1}\right)=U_{i}$ and $\mathcal{L}\left(\mathcal{A}_{2}\right)=U_{j}^{\omega}$.
Main ideas:

- Copy both automata
- One can switch from \mathcal{A}_{1} to \mathcal{A}_{2} for every final state of \mathcal{A}_{1}

In detail: Let $\mathcal{B}=\left(\mathcal{Q}_{1} \uplus \mathcal{Q}_{2}, \Sigma, q_{0,1}, \delta^{\prime}, F_{2}\right)$ where δ^{\prime} is defined as:

- If $q^{\prime} \in \delta_{1}(q, a) \cup \delta_{2}(q, a)$ then $q^{\prime} \in \delta^{\prime}(q, a)$
- If $q \in F_{1}$ and $q^{\prime} \in \delta_{2}\left(q_{0,2}, a\right)$ then $q^{\prime} \in \delta^{\prime}(q, a)$
- No other states are in $\delta^{\prime}(q, a)$

Lemma
$\mathcal{L}(\mathcal{B})=\mathcal{L}\left(\mathcal{A}_{1}\right) \cdot \mathcal{L}\left(\mathcal{A}_{2}\right)=U_{i} \cdot U_{j}^{\omega}$

