Model Checking

René Thiemann

Institute of Computer Science
University of Innsbruck

SS 2008

Outline

- Overview
- Monotone Functions and Fixpoints
- μ-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm
- μ-Calculus: Alternation Depth and Improved Model-Checking Algorithm
- μ-Calculus: Games for Model-Checking
- Summary

Model-Checking for Different Logics

μ-calculus

- Very expressive
\Rightarrow many logics can be translated into μ-calculus
- Efficient (parallel) model-checking algorithms
- Based upon fixpoints
- Not very human-readable
use μ-calculus mainly for model-checking of other logics and not for direct specification

Fixpoints

Let $\tau: D \rightarrow D$ be a function over some domain D

- $d \in D$ is fixpoint of τ iff $\tau(d)=d$
- Not every function has a fixpoint
- Some functions have more than one fixpoint

Let D be equipped with a partial order \leqslant

- d is least fixpoint of $\tau(\operatorname{lfp}(\tau))$ iff $\tau(d)=d$ and $d \leqslant e$ for all other fixpoints e of τ
- d is greatest fixpoint of $\tau(g f p(\tau))$ iff $\tau(d)=d$ and $e \leqslant d$ for all other fixpoints e of τ

Monotone Functions

Let D be a domain with partial order \leqslant.

- A function $\tau: D \rightarrow D$ is monotone iff $d \leqslant e \Rightarrow \tau(d) \leqslant \tau(e)$

Examples:

- x^{2} is monotone over the naturals, but not over the integers
- For $D=2^{S}, \leqslant=\subseteq$, and arbitrary $Y \in D$, i.e., $Y \subseteq S$:
- $\tau_{1}(X)=X \cap Y$ is monotone
- $\tau_{2}(X)=X \cup Y$ is monotone
- $\tau_{3}(X)=D \backslash X$ is not monotone
- Remark:
- τ_{1}, τ_{2} have both least and greatest fixpoints
- τ_{3} does not have a single fixpoint if $S \neq \varnothing$

Existence and Computation of Fixpoints

Theorem (Knaster, Tarski)
Let S be a finite set, let $D=2^{S}$ be ordered by \subseteq, let $\tau: D \rightarrow D$.
If τ is monotone then

- $\operatorname{lfp}(\tau)=\tau^{|S|}(\varnothing)$
- $\operatorname{gfp}(\tau)=\tau^{|S|}(S)$

Proof

Summary of Fixpoints

- X is fixpoint of τ iff $\tau(X)=X$
- Function $\tau: 2^{S} \rightarrow 2^{S}$ is monotone iff $X \subseteq Y$ implies $\tau(X) \subseteq \tau(Y)$ (union and intersection are monotone, complement is not monotone)
- If S is finite and τ monotone then τ has least and greatest fixpoint:
- $\operatorname{Ifp}(\tau)=\tau^{|S|}(\varnothing)$
- $\operatorname{gfp}(\tau)=\tau^{|S|}(S)$

A Small Change in Transition Systems

Transition systems may now have labeled edges:
A transition system TS is a tuple

$$
(S, A c t, \rightarrow, I, A P, L)
$$

where

- S is a set of states
- Act is a set of actions
- $\rightarrow \subseteq S \times A c t \times S$ is a transition relation
- $I \subseteq S$ is a set of initial states
- $A P$ is a set of atomic propositions
- $L: S \rightarrow 2^{A P}$ is a labeling function

Example

μ-Calculus

Let $T S=(S, A c t, \rightarrow, I, A P, L)$ be a transition system.
Let $\mathcal{V}=\{x, y, \ldots\}$ be a set of variables (ranging over sets of states)
Definition (μ-Calculus Syntax)
A formula of the μ-calculus (L_{μ}-formula) has one of the following forms:

- p where $p \in A P$
- $\varphi \wedge \psi, \varphi \vee \psi, \neg \varphi$
- $\langle a\rangle \varphi$ where $a \in A c t$
- $[a] \varphi$ where $a \in$ Act
there is an a-successor satisfying φ all a-successors satisfy φ
- x where $x \in \mathcal{V}$
- $\mu x . \varphi$ where $x \in \mathcal{V}$
- $\nu x . \varphi$ where $x \in \mathcal{V}$
least fixpoint greatest fixpoint

In last two cases, x may only occur in φ under an even number of negations
Binding priority: $\{\neg,\langle\cdot\rangle,[\cdot]\} \sqsupset\{\wedge, \vee\} \sqsupset\{\mu, \nu\}$

μ-Calculus

Let $T S=(S, A c t, \rightarrow, I, A P, L)$ be a transition system.
Let $\mathcal{V}=\{x, y, \ldots\}$ be a set of variables (ranging over sets of states).
Let $\alpha: \mathcal{V} \rightarrow 2^{S}$ be a variable assignment
Definition (μ-Calculus Semantic)
For each L_{μ}-formula and variable assignment define the satisfiability set as

- $\llbracket p \rrbracket_{\alpha}=\{s \mid p \in L(s)\}$
- $\llbracket \varphi \wedge \psi \rrbracket_{\alpha}=\llbracket \varphi \rrbracket_{\alpha} \cap \llbracket \psi \rrbracket_{\alpha}$
- $\llbracket \varphi \vee \psi \rrbracket_{\alpha}=\llbracket \varphi \rrbracket_{\alpha} \cup \llbracket \psi \rrbracket_{\alpha}$
- $\llbracket \neg \psi \rrbracket_{\alpha}=S \backslash \llbracket \varphi \rrbracket_{\alpha}$
- $\llbracket\langle a\rangle \varphi \rrbracket_{\alpha}=\left\{s \mid\right.$ there is $s \xrightarrow{a} t$ and $\left.t \in \llbracket \varphi \rrbracket_{\alpha}\right\}$
- $\llbracket[a] \varphi \rrbracket_{\alpha}=\left\{s \mid\right.$ whenever $s \xrightarrow{a} t$ then $\left.t \in \llbracket \varphi \rrbracket_{\alpha}\right\}$
- $\llbracket x \rrbracket_{\alpha}=\alpha(x)$
- $\llbracket \mu x . \varphi \rrbracket_{\alpha}=\operatorname{lfp}(\tau)$ where $\tau: 2^{S} \rightarrow 2^{S}, \tau(X)=\llbracket \varphi \rrbracket_{\alpha[x:=X]}$
- $\llbracket \nu x . \varphi \rrbracket_{\alpha}=\operatorname{gfp}(\tau)$ where $\tau: 2^{S} \rightarrow 2^{S}, \tau(X)=\llbracket \varphi \rrbracket_{\alpha[x:=X]}$

A Note on Well-Definedness

- Example:

For $\mu x . \neg x$ obtain $\tau(X)=S \backslash X \Rightarrow$ no Ifp \Rightarrow no $\llbracket \mu x . \neg x \rrbracket_{\alpha}$
However, $\mu x . \neg x$ is not a L_{μ}-formula
(x occurs under an odd number of negations)

- Semantic is well-defined iff both
- $\operatorname{Ifp}(\tau)$ and
- $\operatorname{gfp}(\tau)$
exist where τ is defined as $\tau(X)=\llbracket \varphi \rrbracket_{\alpha[x:=X]}$
- Requirement of even number of negations ensures that τ is monotone!
\Rightarrow Knaster \& Tarski ensures that both $\operatorname{Ifp}(\tau)$ and $g f p(\tau)$ exist
\Rightarrow Semantic is well-defined

Model-Checking for the μ-Calculus

- A L_{μ}-formula is closed iff it does not contain free variables
\Rightarrow For closed formulas α is not required
\Rightarrow Define model relation for closed formulas:

$$
T S \models \varphi \quad \text { iff } \quad I \subseteq \llbracket \varphi \rrbracket
$$

Naive Model-Checking Algorithm:

- Just compute $\llbracket \varphi \rrbracket$ by directly applying the definition of the semantics in a top-down way
- To compute fixpoints use Knaster \& Tarski
- $\operatorname{Ifp}(\tau)=\tau^{|S|}(\varnothing)$
- $g f p(\tau)=\tau^{|S|}(S)$
- Model-Checking for μ-calculus boils down to simple set operations

Naive MC-Algorithm for the μ-Calculus

Input:
A closed L_{μ}-formula φ and a transition system $T S=(S, A c t, \rightarrow, I, A P, L)$
Output: The boolean value of $T S \models \varphi$ Global variable: $\alpha: \mathcal{V}(\varphi) \rightarrow 2^{S}$
function model_check (φ) return $I \subseteq \operatorname{sem}(\varphi)$
procedure reset (x)
if x is μ-variable then $\alpha(x):=\varnothing$ else $\alpha(x):=S$

Naive MC-Algorithm for the μ-Calculus
function $\operatorname{sem}(\varphi)$
case φ of
x : return $\alpha(x)$
$p: \operatorname{return}\{s \mid p \in L(s)\}$
$\neg \psi$: return $S \backslash \operatorname{sem}(\psi)$
$\psi_{1} \wedge \psi_{2}:$ return $\operatorname{sem}\left(\psi_{1}\right) \cap \operatorname{sem}\left(\psi_{2}\right)$
$\psi_{1} \vee \psi_{2}:$ return $\operatorname{sem}\left(\psi_{1}\right) \cup \operatorname{sem}\left(\psi_{2}\right)$
$\langle a\rangle \psi:$ return $\{s \mid \exists s \xrightarrow{a} t, t \in \operatorname{sem}(\psi)\}$
$[a] \psi:$ return $\{s \mid \forall s \xrightarrow{a} t: t \in \operatorname{sem}(\psi)\}$
Qx. ψ :
reset (x)
while true do
$\mathrm{U}:=\alpha(x)$
$\mathrm{V}:=\operatorname{sem}(\psi)$
if $\mathrm{U}=\mathrm{V}$ then return U else $\alpha(x):=\mathrm{V}$

Example

Computing $\llbracket \varphi \rrbracket$ for $\varphi=\mu x .[b] \nu y . x \vee\langle a\rangle y$ and the following TS.

	$\llbracket \varphi \rrbracket$	$\alpha(x)$	$\llbracket[b] \nu y . x \vee\langle a\rangle y \rrbracket_{\alpha}$	$\llbracket \nu y \cdot x \vee\langle a\rangle y \rrbracket_{\alpha}$	$\alpha(y)$	$\llbracket x \vee\langle a\rangle y \rrbracket_{\alpha}$	$\llbracket\langle a\rangle y \rrbracket_{\alpha}$
1	\checkmark						
2	\checkmark						
3	\checkmark						
4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
5							

Hence, $\llbracket \varphi \rrbracket=\{1,2,3,4\}$ and $T S \models \varphi$.
Complexity of naive algorithm:

$$
\mathcal{O}\left((|T S| \cdot|\varphi|)^{|\mathcal{V}(\varphi)|}\right)
$$

Encoding of Logics into μ-Calculus

Theorem
Every CTL-formula can be translated into a closed L_{μ}-formula.
Proof.
W.I.o.g. all transitions are labeled by "a" (CTL cannot distinguish these)

- $\operatorname{AX} \varphi \rightsquigarrow[a] \varphi$
- $\operatorname{EX} \varphi \rightsquigarrow\langle a\rangle \varphi$
- $\mathrm{A} \varphi \mathrm{U} \psi \rightsquigarrow \mu x . \psi \vee(\varphi \wedge[a] x)$
- $\mathrm{E} \varphi \cup \psi \rightsquigarrow \mu x . \psi \vee(\varphi \wedge\langle a\rangle x)$
- $\mathrm{AG} \varphi \rightsquigarrow \nu \times . \varphi \wedge[a] x$

Problem: Resulting complexity is exponential, although CTL-model checking has linear complexity.

Example

Computing $\llbracket \mu x . \varphi_{x} \rrbracket$ for the following TS where

$$
\begin{aligned}
\varphi_{x} & =q \vee\langle a\rangle \mu y \cdot \varphi_{y} \\
\varphi_{y} & =p \wedge\langle a\rangle(x \vee y)
\end{aligned}
$$

Complexity of improved algorithm:

$$
\mathcal{O}\left((|T S| \cdot|\varphi|)^{?}\right)
$$

Positive Normal Form

L_{μ}-formula φ is in positive normal form (PNF) iff every variable is bound at most once and " \neg " only occurs before propositions p
Theorem
Every closed L_{μ}-formula can be translated into positive normal form.
Proof.

- $\neg(\varphi \wedge \psi) \rightsquigarrow \neg \varphi \vee \neg \psi$
- $\neg(\varphi \vee \psi) \rightsquigarrow \neg \varphi \wedge \neg \psi$
- $\neg(\neg \varphi) \rightsquigarrow \varphi$
- $\neg\langle a\rangle \varphi \rightsquigarrow[a] \neg \varphi$
- $\neg[a] \varphi \rightsquigarrow\langle a\rangle \neg \varphi$
- $\neg \mu x . \varphi \rightsquigarrow \nu x . \neg \varphi[x / \neg x]$
- $\neg \nu x . \varphi \rightsquigarrow \mu x . \neg \varphi[x / \neg x]$
- $\neg x$ does not occur due to "even number of negations"-condition

Example

Improved MC-Algorithm for the μ-Calculus [Emerson,Lei]

Input:
A closed L_{μ}-formula φ in PNF and a transition system $T S=(S, I, \ldots, L)$
Output: \quad The boolean value of $T S \models \varphi$
Global variables: $\alpha: \mathcal{V}(\varphi) \rightarrow 2^{S}$
Valid $\subseteq \mathcal{V}(\varphi) \quad / / x \in$ Valid implies $\alpha(x)=\llbracket Q x . \varphi_{x} \rrbracket_{\alpha}$
function model_check(φ)
Valid $:=\varnothing$
for all $x \in \mathcal{V}(\varphi)$ do $\operatorname{reset}(x)$
return $I \subseteq \operatorname{sem}(\varphi)$
procedure reset (x)
if x is μ-variable then $\alpha(x):=\varnothing$ else $\alpha(x):=S$

Improved MC-Algorithm for the μ-Calculus [Emerson, Lei]

 function $\operatorname{sem}(\varphi)$case φ of
x : return $\alpha(x)$
$p: \operatorname{return}\{s \mid p \in L(s)\}$
$\neg p:$ return $\{s \mid p \notin L(s)\}$
$\psi_{1} \wedge \psi_{2}:$ return $\operatorname{sem}\left(\psi_{1}\right) \cap \operatorname{sem}\left(\psi_{2}\right)$
$\psi_{1} \vee \psi_{2}:$ return $\operatorname{sem}\left(\psi_{1}\right) \cup \operatorname{sem}\left(\psi_{2}\right)$
$\langle a\rangle \psi: \operatorname{return}\{s \mid \exists s \xrightarrow{a} t, t \in \operatorname{sem}(\psi)\}$
$[a] \psi:$ return $\{s \mid \forall s \xrightarrow{a} t: t \in \operatorname{sem}(\psi)\}$
Qx. ψ : if $x \in$ Valid then return $\alpha(x)$ else while true do
$\mathrm{U}:=\alpha(x) ; \mathrm{V}:=\operatorname{sem}(\psi)$
if $U=V$ then
Valid $:=$ Valid $\cup\{x\}$; return U
else

$$
\alpha(x):=V ; \operatorname{touch}(Q x . \psi)
$$

Improved MC-Algorithm for the μ-Calculus [Emerson,Lei]

procedure touch $\left(Q^{\prime} x . \varphi_{x}\right)$
Valid $:=$ Valid $\backslash\left\{y \mid Q y . \varphi_{y} \in \mathcal{S} u b\left(\varphi_{x}\right), x \in \mathcal{F} \mathcal{V}\left(\varphi_{y}\right)\right\}$
Reset $:=\left\{y \mid Q y . \varphi_{y} \in \mathcal{S u b}\left(\varphi_{x}\right), x \in \mathcal{F} \mathcal{V}\left(\varphi_{y}\right), Q \neq Q^{\prime}\right\}$
while $z \in\left\{z \mid \exists y \in \operatorname{Reset}, Q z . \varphi_{z} \in \mathcal{S} u b\left(\varphi_{y}\right), \mathcal{F} \mathcal{V}\left(\varphi_{z}\right) \cap\right.$ Reset $\left.\neq \varnothing\right\}$ do
Reset $:=$ Reset $\cup\{z\}$
for all $y \in$ Reset do reset (y)
Valid := Valid \backslash Reset

- $\mathcal{F V}(\varphi)$ is the set of free variables of φ
- $\mathcal{S u b}(\varphi)$ is the set of sub-formulas of φ
- φ_{x} is the unique formula which is the argument of " $Q x$."

Illustration of touch

Example

Computing $\llbracket \nu z . \varphi_{z} \rrbracket$ for the following TS where

$$
\begin{aligned}
\varphi_{z} & =z \wedge\langle a\rangle \mu x \cdot \varphi_{x} \\
\varphi_{x} & =q \vee\langle a\rangle \mu y \cdot \varphi_{y} \\
\varphi_{y} & =p \wedge\langle a\rangle(x \vee y)
\end{aligned}
$$

Complexity of the Algorithm

Definition (Alternation Depth)
Variable x depends on y in $\varphi\left(x \prec_{\varphi} y\right)$ iff φ contains subformula $Q x . \psi$ and y is a free variable of ψ.

The alternation depth of a formula φ in PNF is defined as $\operatorname{ad}(\varphi)=n$ where n is the largest number such that $x_{1} \prec_{\varphi} \cdots \prec_{\varphi} x_{n}$ and the type of x_{i} is different to the type of x_{i+1} for every $i<n$.

A formula with $\operatorname{ad}(\varphi) \leqslant 1$ is called alternation free.

Theorem

The algorithm of Emerson and Lei is sound and has complexity

$$
\mathcal{O}\left((|T S| \cdot|\varphi|)^{\operatorname{ad}(\varphi)}\right) .
$$

Efficient implementations available using binary decision diagrams (BDDs)

Example

$$
\begin{aligned}
a d(q \vee\langle a\rangle p) & = \\
a d(\mu x \cdot q \vee\langle a\rangle(\mu y \cdot p \wedge\langle a\rangle(x \vee y))) & = \\
\operatorname{ad}(\nu z . z \wedge\langle a\rangle(\mu x \cdot q \vee\langle a\rangle \mu y \cdot p \wedge\langle a\rangle(x \vee y))) & = \\
a d(\mu x \cdot[b] \nu y \cdot x \vee\langle a\rangle y) & = \\
a d(\nu x \cdot \mu y \cdot y \wedge x \wedge(\nu z \cdot z) \wedge \nu u \cdot(u \wedge x)) & = \\
a d(\nu x \cdot \mu y \cdot y \wedge x \wedge(\nu z . z) \wedge \nu u \cdot(u \wedge y)) & =
\end{aligned}
$$

Proof of Soundness

One crucial point is to use a stronger variant of Knaster-Tarski:
Theorem (Variant of Knaster-Tarski)
Let S be a finite set, let $D=2^{S}$ be ordered by \subseteq, let $\tau: D \rightarrow D$.
If τ is monotone then

- $\operatorname{Ifp}(\tau)=\tau^{|S|}(T)$ if $T \subseteq \tau^{k}(\varnothing)$ for some k
- $\operatorname{gfp}(\tau)=\tau^{|S|}(T)$ if $T \supseteq \tau^{k}(S)$ for some k

Then the soundness of the algorithm can be proven by induction on φ using the following invariants:

Encoding of Logics into μ-Calculus

Theorem
Every CTL-formula can be translated into an alternation free L_{μ}-formula.
Proof.

- ...
- $\mathrm{E} \varphi \mathrm{U} \psi \rightsquigarrow \mu x . \psi \vee(\varphi \wedge\langle a\rangle x)$
- $\mathrm{AG} \varphi \rightsquigarrow \nu x . \varphi \wedge[a] x$

Resulting formula has only trivial dependencies $x \prec x$.
\Rightarrow CTL-model checking via μ-calculus has linear and hence, optimal complexity

Theorem

Every CTL*-formula can be translated into a L_{μ}-formula with alternation depth 2 .

Overview

Current approach:

- Formula $\rightsquigarrow L_{\mu}$-formula \rightsquigarrow PNF \rightsquigarrow Emerson Lei MC (BDDs)
- Global approach - whole transition system required and processed

Upcoming approach:

- Formula $\rightsquigarrow L_{\mu}$-formula \rightsquigarrow PNF \rightsquigarrow MC based on Games
- Sequential algorithm for alternation free formulas
- Local approach - only parts of transition system required, on-the-fly
- Parallel algorithm for alternation free formulas
- (Not shown: algorithm for formulas with alternation depth 2)

Obtain efficient model-checker for μ-calculus, CTL, CTL*, ...

Overview of Games for Model-Checking

1. PNF \rightsquigarrow graph
2. Graph \times transition sytem \rightsquigarrow game graph
3. Model-checking $=$ determining winner of game
4. Bottom-up sequential algorithm to determine winner
5. Top-down sequential algorithm to determine winner
6. Parallelization

1. From closed $L_{\mu^{\prime}}$-formula in PNF to graph

- First write down a given formula φ as a tree where
- Each formula has as successors its direct subformulas
- $\neg p$ is seen as an atomic formula
- Then obtain a graph by adding edges from each x to $Q x . \varphi_{x}$
\Rightarrow Nodes of the graph are $\mathcal{S u b}(\varphi)$ where duplicates are allowed (e.g., node $p \wedge p$ has two successors p, each p being a separate node)
φ alternation free: Partition graph into components Q_{1}, \ldots, Q_{n} such that
- Each Q_{i} has only edges to $Q_{i} \cup Q_{i+1} \cup \cdots \cup Q_{n}$
- Each Q_{i} contains only μ-formulas or only ν-formulas (then we call $Q_{i} \mu$-component or ν-component)

Algorithm: Perform SCC decomposition, then merge singleton nodes into adjoint component

Example

2. PNF + Transition System = Game Graph

Two player games:

- Players \forall belard and \exists loise
- Game graph is directed graph where nodes are called configurations The set of configurations C is partitioned into $C=C_{\forall \text { belard }} \uplus C_{\exists l o i s e}$
- A play is infinite or maximal finite sequence of configurations

$$
c_{0} \hookrightarrow c_{1} \hookrightarrow c_{2} \hookrightarrow \ldots
$$

If $c_{i} \in C_{\forall \text { belard }}$ then \forall belard can choose c_{i+1}, same for \exists loise

Here:

- Game graph for $T S=\left(S, A c t, \rightarrow, I=\left\{s_{0}\right\}, A P, L\right)$ and φ has configurations $C=S \times \mathcal{S u b}(\varphi)$, initial configuration $c_{0}=\left(s_{0}, \varphi\right)$ (similar to tabular of Emerson Lei algorithm, but here only reachable part has to be computed! \Rightarrow on-the-fly algorithm)
- \forall belard wants to show $s \notin \llbracket \psi \rrbracket$, ヨloise wants to show $s \in \llbracket \psi \rrbracket$

Game Graph

The edges of the game graph are determined as follows:

1. If $c=\left(s, \psi_{1} \wedge \psi_{2}\right)$ then \forall belard can move to $\left(s, \psi_{1}\right)$ or $\left(s, \psi_{2}\right)$
2. If $c=(s,[a] \psi)$ then \forall belard can move to (t, ψ) for some $s \xrightarrow{a} t$
3. If $c=(s, \nu x . \psi)$ then the successor is (s, ψ)
4. If $c=(s, x)$ then the successor is $\left(s, Q x \cdot \varphi_{x}\right)$
5. If $c=\left(s, \psi_{1} \vee \psi_{2}\right)$ then \exists loise can move to $\left(s, \psi_{1}\right)$ or $\left(s, \psi_{2}\right)$
6. If $c=(s,\langle a\rangle \psi)$ then \exists loise can move to (t, ψ) for some $s \xrightarrow{a} t$
7. If $c=(s, \mu x . \psi)$ then the successor is (s, ψ)
8. If $c=(s, p)$ or $c=(s, \neg p)$ then the play is finished

Configurations in cases 1-4 belong to \forall belard, cases 5-8 belong to \exists loise (in cases $3,4,7,8$ this is not important, as there is no choice)

Playing a Game

Given a play $c_{0} \hookrightarrow c_{1} \hookrightarrow \ldots$ there are two possibilities:

- If play is finite, $c_{n}=(s, \psi)$ is last configuration then \forall belard wins iff
- $\psi=\langle a\rangle \chi \quad$ (since there is no successor by maximality of play)
- $\psi=p$ and $p \notin L(s)$ or $\psi=\neg p$ and $p \in L(s)$

In all other finite plays ヨloise wins

- \forall belard/ \exists loise wins an infinite play iff the maximal subformula that is visited infinitely often is a μ / ν-formula

Strategies

A strategy $\mathcal{S t r}$ of a player is a function which takes an initial part of a play which ends in a configuration which belongs to that player and returns the configuration where the player wants to move to. Formally:

Str : $C^{*} C_{\text {player }} \rightarrow C \cup\{\perp\}$ such that for all $c_{0} \ldots c_{n} \in C^{*} C_{\text {player }}:$

- If $\operatorname{Str}\left(c_{0} \ldots c_{n}\right) \in \mathcal{C}$ then $c_{n} \hookrightarrow \mathcal{S} \operatorname{tr}\left(c_{0} \ldots c_{n}\right)$ is allowed move
- If $\mathcal{S t r}\left(c_{0} \ldots c_{n}\right)=\perp$ then c_{n} has no successor

Note that a strategy of player uniquely determines all moves of that player for any given play; we then speak of a \mathcal{S} tr-play

A strategy \mathcal{S} tr of a player is a winning strategy if for each \mathcal{S} tr-play that player is the winner

A strategy \mathcal{S} tr is positional, if \mathcal{S} tr only considers the last configuration, i.e., $\operatorname{Str}: C_{\text {player }} \rightarrow C \cup\{\perp\}$

Example Strategies

3. Model Checking by Games

Theorem (Stirling)
For each formula φ and each transition system TS:

- if $T S \models \varphi$ then \exists loise has a positional winning strategy
- if TS $\not \vDash \varphi$ then \forall belard has a positional winning strategy

Algorithmic approach for model checking

- Color configuration of game-graph by green/red if \exists loise/ \forall belard has winning strategy when starting from that configuration
- $T S \models \varphi$ iff color of c_{0} is green

4. Bottom-Up Coloring

We only consider alternation free formulas
Remember: Then graph for formula (and also game-graph) can be partitioned into components C_{1}, \ldots, C_{n} such that

- all components have only μ-formulas or only ν-formulas
- all edges of C_{i} lead to $C_{i} \cup \cdots \cup C_{n}$

Thus, every play starting in C_{i} will either

1. leave C_{i} and continue in some $C_{i+k}, k>0$
2. reach a terminal configuration in C_{i}
(terminal configuration $=$ configuration without successors)
3. stay in C_{i} forever

In case 1, the winner can be determined by the color of the configuration that is visited first in C_{i+k}
In case 2, the terminal configuration specifies the winner In case $3, \forall$ belard $/ \exists$ loise wins iff C_{i} is μ / ν-component

4. Bottom-Up Coloring

Hence, perform the following coloring process:

- every terminal configuration c is colored by red if the play c is won by \forall belard and by green, otherwise
- colors are propagated bottom-up: let c be configuration with successors c_{1}, \ldots, c_{m} with $m>0$
- $c \in C_{\exists l o i s e}$, some c_{i} green \rightsquigarrow color c green
- $c \in C_{\exists \text { loise }}$, all c_{i} red \rightsquigarrow color c red
- $c \in C_{\forall \text { belard }}$, some c_{i} red \rightsquigarrow color c red
- $c \in C_{\forall \text { belard }}$, all c_{i} green \rightsquigarrow color c green
- If all colors of C_{i+1}, \ldots, C_{n} are determined and no propagation is possible for configurations of C_{i} then
- color all white nodes of C_{i} by red if C_{i} is μ-component
- color all white nodes of C_{i} by green if C_{i} is ν-component

4. Bottom-Up Coloring

Lemma

Once a configuration has a color, it will never be changed.
Theorem (Bollig, Leucker, Weber)
The bottom-up coloring process terminates and c_{0} has color green/red iff \exists loise/ \forall belard has a positional winning strategy.

Further properties of the bottom-up coloring algorithm:

- Linear complexity (optimal)
- Every configuration is considered (half on-the-fly)

5. Top-Down Coloring

Overview:

- Directly start with top component C_{1}
- Let C_{1} be μ-component (ν-components are treated dually)
- If play ends in C_{1} then winner can be determined
- If play stays in C_{1} then \exists loise looses
\Rightarrow Goal of \exists loise is to leave C_{1} (or reach green terminal configuration)
- Idea: Make successors of C_{1} outside C_{1} attractive
\Rightarrow color these nodes with light-green (optimistic assumption)
- Then propagate colors in C_{1}
- Result after coloring configurations in C_{1}
- configurations with full-color have correct color (as in bottom-up)
- configurations with white color become red (as in bottom-up)
- if initial configuration has full-color then done
- otherwise initial configuration has light-green color: then remove all light-green colors from C_{1}, pick some successor component C_{k} of C_{1} with assumed light-green initial configuration and determine the (full) color of C_{k} 's initial configurations; afterwards color C_{1} again, ...

5. Top-Down Coloring

Details on coloring process:

- every terminal configuration obtains full color (as in bottom-up)
- colors are propagated similar to bottom-up: let c be configuration with successors c_{1}, \ldots, c_{m} with $m>0$
- $c \in C_{\exists \text { loise }}$, some c_{i} green \rightsquigarrow color c green
- $c \in C_{\exists \text { loise }}$, some c_{i} light-green, no c_{j} green \rightsquigarrow color c light-green
- $c \in C_{\exists \text { loise }}$, all c_{i} red \rightsquigarrow color c red
- $c \in C_{\exists \text { loise }}$, all c_{i} red or light-red, some c_{j} light-red \rightsquigarrow color c light-red
- $c \in C_{\forall \text { belard }}$, some c_{i} red \rightsquigarrow color c red
- $c \in C_{\forall \text { belard }}$, some c_{i} light-red, no c_{j} red \rightsquigarrow color c light-red
- $c \in C_{\forall b e l a r d}$, all c_{i} green \rightsquigarrow color c green
- $c \in C_{\forall \text { belard }}$, all c_{i} green or light-green, some c_{j} light-green \rightsquigarrow color c light-green

5. Top-Down Coloring

Lemma

When coloring a component C_{i} a configuration can only change from white to colored, and from each light-color to the corresponding full-color.

Theorem (Bollig, Leucker, Weber)
The top-down coloring process terminates and c_{0} has color green/red iff $\exists l o i s e / \forall$ belard has a positional winning strategy.

Further properties of the top-down coloring:

- Full on-the-fly algorithm (optimal)
- Quadratic complexity (sub-optimal)

6. Parallelization

Let us consider n machines (PCs in a cluster, etc.):

- Game graph distribution:
- Size of game graph unknown when starting algorithm
- Assume hash function f
- Machine i stores configuration c iff $f(c) \bmod n=i$ (additionally successors and predecessors of c are stored on machine i)
- Game graph construction:
- Use breadth-first search (easy to parallelize with above distribution)
- Coloring (both bottom-up and top-down):
- Process components sequentially, but color each component in parallel
- as soon as terminal state is detected during game graph construction start backwards coloring process (in parallel)
- if coloring of component is done, recolor white and light-color configurations (in parallel)

6. Parallelization

Some notes on parallelization:

- Cycle detection is inherently sequential (but required for model checking via NBAs)
- Coloring algorithm does not need cycle detection, but parallel termination detection
\Rightarrow Algorithms for parallel termination detection available (e.g. DFG token termination algorithm of Dijkstra, Feijen, Gasteren)

Summary

- μ-calculus is expressive logic (subsumes CTL*, NBAs)
- μ-calculus is based on least- and greatest fixpoint operators
- direct model-checking algorithm based on set-operations, complexity is exponential in alternation depth
- model-checking via games (winning strategy of \exists loise or \forall belard)
- bottom-up and top-down (parallel) on-the-fly coloring algorithms for alternation free formulas

