

Model Checking

René Thiemann

Institute of Computer Science University of Innsbruck

SS 2008

Outline

- Overview
- Monotone Functions and Fixpoints
- ullet μ -Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm
- $\bullet~\mu\text{-Calculus}:$ Alternation Depth and Improved Model-Checking Algorithm
- μ-Calculus: Games for Model-Checking
- Summary

Model-Checking for Different Logics

μ -calculus

- Very expressive
- \Rightarrow many logics can be translated into μ -calculus
 - Efficient (parallel) model-checking algorithms
 - Based upon fixpoints
 - Not very human-readable
- \Rightarrow use μ -calculus mainly for model-checking of other logics and not for direct specification

Fixpoints

Let $\tau: D \to D$ be a function over some domain D

- $d \in D$ is fixpoint of τ iff $\tau(d) = d$
- Not every function has a fixpoint
- Some functions have more than one fixpoint

Let D be equipped with a partial order \leq

- d is least fixpoint of τ ($lfp(\tau)$) iff $\tau(d) = d$ and $d \le e$ for all other fixpoints e of τ
- d is greatest fixpoint of τ ($gfp(\tau)$) iff $\tau(d) = d$ and $e \le d$ for all other fixpoints e of τ

Monotone Functions

Let D be a domain with partial order \leq .

• A function $\tau:D\to D$ is monotone iff $d\leqslant e\Rightarrow \tau(d)\leqslant \tau(e)$

Examples:

- x^2 is monotone over the naturals, but not over the integers
- For $D=2^S$, $\leqslant = \subseteq$, and arbitrary $Y \in D$, i.e., $Y \subseteq S$:
 - $\tau_1(X) = X \cap Y$ is monotone
 - $\tau_2(X) = X \cup Y$ is monotone
 - $\tau_3(X) = D \setminus X$ is not monotone
- Remark:
 - τ_1, τ_2 have both least and greatest fixpoints
 - τ_3 does not have a single fixpoint if $S \neq \emptyset$

Existence and Computation of Fixpoints

Theorem (Knaster, Tarski)

Let S be a finite set, let $D = 2^S$ be ordered by \subseteq , let $\tau : D \to D$. If τ is monotone then

- $Ifp(\tau) = \tau^{|S|}(\varnothing)$
- $gfp(\tau) = \tau^{|S|}(S)$

Proof

Summary of Fixpoints

- X is fixpoint of τ iff $\tau(X) = X$
- Function $\tau: 2^S \to 2^S$ is monotone iff $X \subseteq Y$ implies $\tau(X) \subseteq \tau(Y)$ (union and intersection are monotone, complement is not monotone)
- If S is finite and τ monotone then τ has least and greatest fixpoint:
 - $lfp(\tau) = \tau^{|S|}(\varnothing)$
 - $gfp(\tau) = \tau^{|S|}(S)$

A Small Change in Transition Systems

Transition systems may now have labeled edges: A *transition system TS* is a tuple

$$(S, Act, \rightarrow, I, AP, L)$$

where

- *S* is a set of states
- Act is a set of actions
- $\bullet \to \subseteq S \times Act \times S$ is a transition relation
- $I \subseteq S$ is a set of initial states
- AP is a set of atomic propositions
- $L: S \to 2^{AP}$ is a labeling function

Example

μ -Calculus

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system. Let $V = \{x, y, ...\}$ be a set of variables (ranging over sets of states)

Definition (μ -Calculus Syntax)

A formula of the μ -calculus (L_{μ} -formula) has one of the following forms:

- p where $p \in AP$
- $\varphi \wedge \psi$, $\varphi \vee \psi$, $\neg \varphi$
- $\langle a \rangle \varphi$ where $a \in Act$
- $[a]\varphi$ where $a \in Act$
- x where $x \in \mathcal{V}$
 - $\mu x. \varphi$ where $x \in \mathcal{V}$
 - $\nu x. \varphi$ where $x \in \mathcal{V}$

there is an a-successor satisfying φ

all a-successors satisfy φ

least fixpoint

greatest fixpoint

In last two cases, x may only occur in φ under an even number of negations Binding priority: $\{\neg, \langle \cdot \rangle, [\cdot]\} \supset \{\wedge, \vee\} \supset \{\mu, \nu\}$

μ -Calculus

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

Let $V = \{x, y, ...\}$ be a set of variables (ranging over sets of states).

Let $\alpha: \mathcal{V} \to 2^{\mathcal{S}}$ be a variable assignment

Definition (μ -Calculus Semantic)

For each L_{μ} -formula and variable assignment define the satisfiability set as

- $[\![p]\!]_{\alpha} = \{s \mid p \in L(s)\}$
- $\llbracket \varphi \wedge \psi \rrbracket_{\alpha} = \llbracket \varphi \rrbracket_{\alpha} \cap \llbracket \psi \rrbracket_{\alpha}$
- $\bullet \ \llbracket \, \varphi \vee \psi \, \rrbracket_{\alpha} = \llbracket \, \varphi \, \rrbracket_{\alpha} \cup \llbracket \, \psi \, \rrbracket_{\alpha}$
- $\bullet \ \llbracket \neg \psi \rrbracket_{\alpha} = S \setminus \llbracket \varphi \rrbracket_{\alpha}$
- $\llbracket \langle a \rangle \varphi \rrbracket_{\alpha} = \{ s \mid \text{there is } s \xrightarrow{a} t \text{ and } t \in \llbracket \varphi \rrbracket_{\alpha} \}$
- $\llbracket [a]\varphi \rrbracket_{\alpha} = \{s \mid \text{ whenever } s \xrightarrow{a} t \text{ then } t \in \llbracket \varphi \rrbracket_{\alpha} \}$
- $[\![x]\!]_{\alpha} = \alpha(x)$
- $\llbracket \mu x. \varphi \rrbracket_{\alpha} = \mathit{lfp}(\tau)$ where $\tau : 2^S \to 2^S$, $\tau(X) = \llbracket \varphi \rrbracket_{\alpha[x:=X]}$
- $\llbracket \nu x. \varphi
 rbracket_{lpha} = gfp(au)$ where $au: 2^S o 2^S$, $au(X) = \llbracket \varphi
 rbracket_{lpha[x:=X]}$

A Note on Well-Definedness

Example:

```
For \mu x. \neg x obtain \tau(X) = S \setminus X \quad \Rightarrow \quad \text{no } \textit{If} p \quad \Rightarrow \quad \text{no } \llbracket \mu x. \neg x \rrbracket_{\alpha} However, \mu x. \neg x is not a L_{\mu}-formula (x occurs under an odd number of negations)
```

- Semantic is well-defined iff both
 - $lfp(\tau)$ and
 - gfp(τ)

exist where τ is defined as $\tau(X) = \llbracket \varphi \rrbracket_{\alpha[x:=X]}$

- Requirement of even number of negations ensures that τ is monotone!
- \Rightarrow Knaster & Tarski ensures that both $lfp(\tau)$ and $gfp(\tau)$ exist
- ⇒ Semantic is well-defined

Model-Checking for the μ -Calculus

- A L_{μ} -formula is closed iff it does not contain free variables
- \Rightarrow For closed formulas α is not required
- ⇒ Define model relation for closed formulas:

$$TS \models \varphi$$
 iff $I \subseteq \llbracket \varphi \rrbracket$

Naive Model-Checking Algorithm:

- Just compute $[\![\varphi]\!]$ by directly applying the definition of the semantics in a top-down way
- To compute fixpoints use Knaster & Tarski
 - $Ifp(\tau) = \tau^{|S|}(\varnothing)$
 - $gfp(\tau) = \tau^{|S|}(S)$
- ullet Model-Checking for μ -calculus boils down to simple set operations

Naive MC-Algorithm for the μ -Calculus

Input: A closed L_{μ} -formula φ and

a transition system $TS = (S, Act, \rightarrow, I, AP, L)$

Output: The boolean value of $TS \models \varphi$

Global variable: $\alpha: \mathcal{V}(\varphi) \to 2^{S}$

function model_check (φ) **return** $I \subseteq \text{sem}(\varphi)$

procedure reset(x)

if x is μ -variable then $\alpha(x) := \emptyset$ else $\alpha(x) := S$

Naive MC-Algorithm for the μ -Calculus

```
function sem(\varphi)
      case \varphi of
           x : return \alpha(x)
           p: return \{s \mid p \in L(s)\}
           \neg \psi : return S \setminus \text{sem}(\psi)
           \psi_1 \wedge \psi_2 : \mathbf{return} \ \mathsf{sem}(\psi_1) \cap \mathsf{sem}(\psi_2)
           \psi_1 \vee \psi_2: return sem(\psi_1) \cup sem(\psi_2)
           \langle a \rangle \psi : \mathbf{return} \ \{ s \mid \exists s \xrightarrow{a} t, t \in \mathsf{sem}(\psi) \}
           [a]\psi: return \{s \mid \forall s \xrightarrow{a} t : t \in \text{sem}(\psi)\}
Qx.\psi:
               reset(x)
                while true do
                    U := \alpha(x)
                    V := sem(\psi)
                    if U = V then return U else \alpha(x) := V
```

Example

Computing $\llbracket \varphi \rrbracket$ for $\varphi = \mu x.[b]\nu y.x \lor \langle a \rangle y$ and the following TS.

	$\llbracket \varphi \rrbracket$	$\alpha(x)$	$[\![b]\nu y.x \vee \langle a \rangle y]\!]_{\alpha}$	$\llbracket \nu y.x \vee \langle a \rangle y \rrbracket_{\alpha}$	$\alpha(y)$	$[\![x \lor \langle a \rangle y]\!]_{\alpha}$	$[\![\langle a \rangle y]\!]_{\alpha}$
1	√	✓	✓	✓	√	✓	✓
2	✓	✓	✓	✓	✓	✓	✓
3	1	√	✓	✓	✓	✓	✓
64	1	11	✓	✓	✓	✓	
5	Same A						

Hence, $\llbracket \varphi \rrbracket = \{1, 2, 3, 4\}$ and $TS \models \varphi$.

Complexity of naive algorithm:

$$\mathcal{O}((|TS| \cdot |\varphi|)^{|\mathcal{V}(\varphi)|})$$

Encoding of Logics into μ -Calculus

Theorem

Every CTL-formula can be translated into a closed L_{μ} -formula.

Proof.

W.l.o.g. all transitions are labeled by "a" (CTL cannot distinguish these)

- $AX\varphi \rightsquigarrow [a]\varphi$
- $\mathsf{E} \mathsf{X} \varphi \leadsto \langle \mathsf{a} \rangle \varphi$
- A $\varphi \cup \psi \leadsto \mu x. \psi \lor (\varphi \land [a]x)$
- $\mathsf{E}\,\varphi\,\mathsf{U}\,\psi \leadsto \mu\mathsf{x}.\psi \lor (\varphi \land \langle \mathsf{a}\rangle\mathsf{x})$
 - AG $\varphi \leadsto \nu x. \varphi \land [a]x$

Problem: Resulting complexity is exponential, although CTL-model checking has linear complexity.

RT (ICS @ UIBK) week 3 22/5

Example

Computing $\llbracket \mu x. \varphi_x \rrbracket$ for the following TS where

$$\varphi_{x} = q \vee \langle a \rangle \mu y. \varphi_{y}$$
$$\varphi_{y} = p \wedge \langle a \rangle (x \vee y)$$

	$\llbracket \mu x. \varphi_X \rrbracket$	$\alpha(x)$	$\llbracket \varphi_X \rrbracket$	[q]	$[\![\langle a \rangle \mu y. \varphi_y]\!]$	$\llbracket \mu y. \varphi_y \rrbracket$	$\alpha(y)$	$\llbracket \varphi_y \rrbracket$	[p]	$[(a)(x \vee y)]$	$[x \lor y]$
161	+31GI)	A. C.	g.								
3	Janes A		D.								
4			- AHI								
5		11/1/	3/11/11								

Complexity of improved algorithm:

$$\mathcal{O}((|TS|\cdot|\varphi|)^?)$$

Positive Normal Form

 L_{μ} -formula φ is in positive normal form (PNF) iff every variable is bound at most once and "¬" only occurs before propositions p

Theorem

Every closed L_{μ} -formula can be translated into positive normal form.

Proof.

- $\neg(\varphi \land \psi) \leadsto \neg \varphi \lor \neg \psi$
- $\neg(\varphi \lor \psi) \leadsto \neg\varphi \land \neg\psi$
- $\neg(\neg\varphi) \rightsquigarrow \varphi$
- $\neg \langle a \rangle \varphi \rightsquigarrow [a] \neg \varphi$
 - $\neg [a]\varphi \rightsquigarrow \langle a \rangle \neg \varphi$
 - $\neg \mu x. \varphi \rightsquigarrow \nu x. \neg \varphi[x/\neg x]$
 - $\neg \nu x. \varphi \rightsquigarrow \mu x. \neg \varphi[x/\neg x]$
 - $\neg x$ does not occur due to "even number of negations"-condition

Example

Improved MC-Algorithm for the μ -Calculus [Emerson,Lei]

Input: A closed L_{μ} -formula φ in PNF and

a transition system TS = (S, I, ..., L)

Output: The boolean value of $TS \models \varphi$

Global variables: $\alpha: \mathcal{V}(\varphi) \to 2^S$

 $\mathsf{Valid} \subseteq \mathcal{V}(\varphi) \quad /\!/ \ x \in \mathsf{Valid} \ \mathsf{implies} \ \alpha(x) = [\![\ \mathit{Qx}.\varphi_x \]\!]_{\alpha}$

```
function model_check(\varphi)
```

```
Valid := \emptyset

for all x \in \mathcal{V}(\varphi) do reset(x)

return I \subset \text{sem}(\varphi)
```

```
procedure reset(x)
```

```
if x is \mu-variable then \alpha(x) := \emptyset else \alpha(x) := S
```

Improved MC-Algorithm for the μ -Calculus [Emerson,Lei]

```
function sem(\varphi)
      case \varphi of
           x : return \alpha(x)
           p: return \{s \mid p \in L(s)\}
           \neg p: return \{s \mid p \notin L(s)\}
          \psi_1 \wedge \psi_2: return sem(\psi_1) \cap sem(\psi_2)
           \psi_1 \vee \psi_2: return sem(\psi_1) \cup sem(\psi_2)
           \langle a \rangle \psi : \mathbf{return} \ \{ s \mid \exists s \xrightarrow{a} t, t \in \mathsf{sem}(\psi) \}
           [a]\psi : \mathbf{return} \ \{s \mid \forall s \xrightarrow{a} t : t \in \mathsf{sem}(\psi)\}
Qx.\psi: if x \in Valid then return \alpha(x) else while true do
               U := \alpha(x); V := sem(\psi)
               if U = V then
                    Valid := Valid \cup \{x\}; return U
               else
                   \alpha(x) := V; touch(Qx.\psi)
```

Improved MC-Algorithm for the μ -Calculus [Emerson,Lei]

```
procedure touch(Q'x.\varphi_x)

Valid := Valid \ \{y \mid Qy.\varphi_y \in Sub(\varphi_x), x \in \mathcal{FV}(\varphi_y)\}

Reset := \{y \mid Qy.\varphi_y \in Sub(\varphi_x), x \in \mathcal{FV}(\varphi_y), Q \neq Q'\}

while z \in \{z \mid \exists y \in \text{Reset}, Qz.\varphi_z \in Sub(\varphi_y), \mathcal{FV}(\varphi_z) \cap \text{Reset} \neq \emptyset\} do

Reset := Reset \cup \{z\}

for all y \in \text{Reset} do reset(y)

Valid := Valid \ Reset
```

- $\mathcal{FV}(arphi)$ is the set of *free variables* of arphi
- ullet $\mathcal{S}ub(arphi)$ is the set of sub-formulas of arphi
- $ullet arphi_{\mathsf{X}}$ is the unique formula which is the argument of "Qx."

Illustration of touch

Example

Computing $\llbracket \nu z. \varphi_z \rrbracket$ for the following TS where

$$\varphi_z = z \wedge \langle a \rangle \mu x. \varphi_x$$

$$\varphi_x = q \vee \langle a \rangle \mu y. \varphi_y$$

$$\varphi_y = p \wedge \langle a \rangle (x \vee y)$$

Complexity of the Algorithm

Definition (Alternation Depth)

Variable x depends on y in φ $(x \prec_{\varphi} y)$ iff φ contains subformula $Q x.\psi$ and y is a free variable of ψ .

The alternation depth of a formula φ in PNF is defined as $ad(\varphi) = n$ where n is the largest number such that $x_1 \prec_{\varphi} \cdots \prec_{\varphi} x_n$ and the type of x_i is different to the type of x_{i+1} for every i < n.

A formula with $ad(\varphi) \leqslant 1$ is called alternation free.

Theorem

The algorithm of Emerson and Lei is sound and has complexity

$$\mathcal{O}((|TS|\cdot|\varphi|)^{ad(\varphi)}).$$

Efficient implementations available using binary decision diagrams (BDDs)

Example

$$ad(q \lor \langle a \rangle p) =$$

$$ad(\mu x.q \lor \langle a \rangle (\mu y.p \land \langle a \rangle (x \lor y))) =$$

$$ad(\nu z.z \land \langle a \rangle (\mu x.q \lor \langle a \rangle \mu y.p \land \langle a \rangle (x \lor y))) =$$

$$ad(\mu x.[b]\nu y.x \lor \langle a \rangle y) =$$

$$ad(\nu x.\mu y.y \land x \land (\nu z.z) \land \nu u.(u \land x)) =$$

$$ad(\nu x.\mu y.y \land x \land (\nu z.z) \land \nu u.(u \land y)) =$$

Proof of Soundness

One crucial point is to use a stronger variant of Knaster-Tarski:

Theorem (Variant of Knaster-Tarski)

Let S be a finite set, let $D = 2^S$ be ordered by \subseteq , let $\tau : D \to D$. If τ is monotone then

- $Ifp(\tau) = \tau^{|S|}(T)$ if $T \subseteq \tau^k(\varnothing)$ for some k
- $gfp(\tau) = \tau^{|S|}(T)$ if $T \supseteq \tau^k(S)$ for some k

Then the soundness of the algorithm can be proven by induction on φ using the following invariants:

Encoding of Logics into μ -Calculus

Theorem

Every CTL-formula can be translated into an alternation free L_{μ} -formula.

Proof.

- . . .
- $\mathsf{E}\,\varphi\,\mathsf{U}\,\psi \rightsquigarrow \mu x.\psi \lor (\varphi \land \langle a\rangle x)$
- AG $\varphi \rightsquigarrow \nu x. \varphi \land [a]x$

Resulting formula has only trivial dependencies $x \prec x$.

 \Rightarrow CTL-model checking via μ -calculus has linear and hence, optimal complexity

Theorem

Every CTL*-formula can be translated into a L_{μ} -formula with alternation depth 2.

Overview

Current approach:

- Formula $\rightsquigarrow L_{\mu}$ -formula \rightsquigarrow PNF \rightsquigarrow Emerson Lei MC (BDDs)
- Global approach whole transition system required and processed

Upcoming approach:

- Formula $\rightsquigarrow L_u$ -formula \rightsquigarrow PNF \rightsquigarrow MC based on Games
- Sequential algorithm for alternation free formulas
- Local approach only parts of transition system required, on-the-fly
- Parallel algorithm for alternation free formulas
- (Not shown: algorithm for formulas with alternation depth 2)

Obtain efficient model-checker for μ -calculus, CTL, CTL*, . . .

Overview of Games for Model-Checking

- 1. PNF → graph
- 2. Graph \times transition sytem \rightsquigarrow game graph
- 3. Model-checking = determining winner of game
- 4. Bottom-up sequential algorithm to determine winner
- 5. Top-down sequential algorithm to determine winner
- 6. Parallelization

1. From closed L_{μ} -formula in PNF to graph

- ullet First write down a given formula arphi as a tree where
 - Each formula has as successors its direct subformulas
 - $\neg p$ is seen as an atomic formula
- Then obtain a graph by adding edges from each x to $Qx.\varphi_x$
- \Rightarrow Nodes of the graph are $Sub(\varphi)$ where duplicates are allowed (e.g., node $p \land p$ has two successors p, each p being a separate node)

arphi alternation free: Partition graph into components Q_1,\dots,Q_n such that

- ullet Each Q_i has only edges to $Q_i \cup Q_{i+1} \cup \cdots \cup Q_n$
- Each Q_i contains only μ -formulas or only ν -formulas (then we call Q_i μ -component or ν -component)

Algorithm: Perform SCC decomposition, then merge singleton nodes into adjoint component

Example

2. PNF + Transition System = Game Graph

Two player games:

- Players ∀belard and ∃loise
- Game graph is directed graph where nodes are called configurations. The set of configurations C is partitioned into $C = C_{\forall belard} \uplus C_{\exists loise}$
- A play is infinite or maximal finite sequence of configurations

$$c_0 \hookrightarrow c_1 \hookrightarrow c_2 \hookrightarrow \dots$$

If $c_i \in C_{\forall belard}$ then $\forall belard$ can choose c_{i+1} , same for $\exists loise$

Here:

- Game graph for $TS = (S, Act, \rightarrow, I = \{s_0\}, AP, L)$ and φ has configurations $C = S \times Sub(\varphi)$, initial configuration $c_0 = (s_0, \varphi)$ (similar to tabular of Emerson Lei algorithm, but here only reachable part has to be computed! \Rightarrow on-the-fly algorithm)
- \forall belard wants to show $s \notin \llbracket \psi \rrbracket$, \exists loise wants to show $s \in \llbracket \psi \rrbracket$

Game Graph

The edges of the game graph are determined as follows:

- 1. If $c = (s, \psi_1 \wedge \psi_2)$ then \forall belard can move to (s, ψ_1) or (s, ψ_2)
- 2. If $c = (s, [a]\psi)$ then \forall belard can move to (t, ψ) for some $s \xrightarrow{a} t$
- 3. If $c = (s, \nu x. \psi)$ then the successor is (s, ψ)
- 4. If c = (s, x) then the successor is $(s, Qx.\varphi_x)$
- 5. If $c = (s, \psi_1 \lor \psi_2)$ then \exists loise can move to (s, ψ_1) or (s, ψ_2)
- 6. If $c = (s, \langle a \rangle \psi)$ then \exists loise can move to (t, ψ) for some $s \xrightarrow{a} t$
- 7. If $c = (s, \mu x. \psi)$ then the successor is (s, ψ)
- 8. If c = (s, p) or $c = (s, \neg p)$ then the play is finished

Configurations in cases 1-4 belong to ∀belard, cases 5-8 belong to ∃loise (in cases 3,4,7,8 this is not important, as there is no choice)

Playing a Game

Given a play $c_0 \hookrightarrow c_1 \hookrightarrow \dots$ there are two possibilities:

- If play is finite, $c_n = (s, \psi)$ is last configuration then \forall belard wins iff
 - $\psi = \langle a \rangle \chi$ (since there is no successor by maximality of play)
 - $\psi = p$ and $p \notin L(s)$ or $\psi = \neg p$ and $p \in L(s)$

In all other finite plays ∃loise wins

• \forall belard/ \exists loise wins an infinite play iff the maximal subformula that is visited infinitely often is a μ/ν -formula

Strategies

A strategy $\mathcal{S}tr$ of a player is a function which takes an initial part of a play which ends in a configuration which belongs to that player and returns the configuration where the player wants to move to. Formally:

$$\mathcal{S}tr: C^*C_{player} \to C \cup \{\bot\}$$
 such that for all $c_0 \dots c_n \in C^*C_{player}$:

- If $\mathcal{S}tr(c_0 \ldots c_n) \in \mathcal{C}$ then $c_n \hookrightarrow \mathcal{S}tr(c_0 \ldots c_n)$ is allowed move
- If $\mathcal{S}tr(c_0 \dots c_n) = \bot$ then c_n has no successor

Note that a strategy of player uniquely determines all moves of that player for any given play; we then speak of a $\mathcal{S}tr$ -play

A strategy $\mathcal{S}\mathit{tr}$ of a player is a winning strategy if for each $\mathcal{S}\mathit{tr}$ -play that player is the winner

A strategy $\mathcal{S}tr$ is positional, if $\mathcal{S}tr$ only considers the last configuration, i.e., $\mathcal{S}tr: \mathcal{C}_{plaver} \to \mathcal{C} \cup \{\bot\}$

Example Strategies

3. Model Checking by Games

Theorem (Stirling)

For each formula φ and each transition system TS:

- if $TS \models \varphi$ then \exists loise has a positional winning strategy
- if $TS \not\models \varphi$ then \forall belard has a positional winning strategy

Algorithmic approach for model checking

- Color configuration of game-graph by green/red if ∃loise/∀belard has winning strategy when starting from that configuration
- $TS \models \varphi$ iff color of c_0 is green

4. Bottom-Up Coloring

We only consider alternation free formulas

Remember: Then graph for formula (and also game-graph) can be partitioned into components C_1, \ldots, C_n such that

- all components have only μ -formulas or only ν -formulas
- all edges of C_i lead to $C_i \cup \cdots \cup C_n$

Thus, every play starting in C_i will either

- 1. leave C_i and continue in some C_{i+k} , k > 0
- 2. reach a terminal configuration in C_i (terminal configuration = configuration without successors)
- 3. stay in C_i forever

In case 1, the winner can be determined by the color of the configuration that is visited first in C_{i+k}

In case 2, the terminal configuration specifies the winner In case 3, \forall belard/ \exists loise wins iff C_i is μ/ν -component

4. Bottom-Up Coloring

Hence, perform the following coloring process:

- every terminal configuration c is colored
 by red if the play c is won by ∀belard and by green, otherwise
- colors are propagated bottom-up: let c be configuration with successors c_1, \ldots, c_m with m > 0
 - $c \in C_{\exists loise}$, some c_i green \leadsto color c green
 - $c \in C_{\exists loise}$, all c_i red \leadsto color c red
 - $c \in C_{\forall belard}$, some c_i red \rightsquigarrow color c red
 - $c \in C_{\forall belard}$, all c_i green \rightsquigarrow color c green
- If all colors of C_{i+1}, \ldots, C_n are determined and no propagation is possible for configurations of C_i then
 - color all white nodes of C_i by red if C_i is μ -component
 - color all white nodes of C_i by green if C_i is ν -component

4. Bottom-Up Coloring

Lemma

Once a configuration has a color, it will never be changed.

Theorem (Bollig, Leucker, Weber)

The bottom-up coloring process terminates and c_0 has color green/red iff \exists loise/ \forall belard has a positional winning strategy.

Further properties of the bottom-up coloring algorithm:

- Linear complexity (optimal)
- Every configuration is considered (half on-the-fly)

5. Top-Down Coloring

Overview:

- Directly start with top component C_1
- Let C_1 be μ -component (ν -components are treated dually)
 - If play ends in C_1 then winner can be determined
 - If play stays in C_1 then \exists loise looses
 - \Rightarrow Goal of \exists loise is to leave C_1 (or reach green terminal configuration)
 - Idea: Make successors of C_1 outside C_1 attractive
 - ⇒ color these nodes with light-green (optimistic assumption)
 - Then propagate colors in C_1
- Result after coloring configurations in C_1
 - configurations with full-color have correct color (as in bottom-up)
 - configurations with white color become red (as in bottom-up)
 - if initial configuration has full-color then done
 - otherwise initial configuration has light-green color: then remove all light-green colors from C_1 , pick some successor component C_k of C_1 with assumed light-green initial configuration and determine the (full) color of C_k 's initial configurations; afterwards color C_1 again, . . .

5. Top-Down Coloring

Details on coloring process:

- every terminal configuration obtains full color (as in bottom-up)
- colors are propagated similar to bottom-up: let c be configuration with successors c_1, \ldots, c_m with m > 0
 - $c \in C_{\exists loise}$, some c_i green \leadsto color c green
 - $c \in C_{\exists loise}$, some c_i light-green, no c_i green \leadsto color c light-green
 - $c \in C_{\exists loise}$, all c_i red \leadsto color c red
 - $c \in C_{\exists loise}$, all c_i red or light-red, some c_i light-red \leadsto color c light-red
 - $c \in C_{\forall belard}$, some c_i red \rightsquigarrow color c red
 - $c \in C_{\forall belard}$, some c_i light-red, no c_j red \leadsto color c light-red
 - $c \in C_{\forall belard}$, all c_i green \rightsquigarrow color c green
 - $c \in C_{\forall belard}$, all c_i green or light-green, some c_j light-green \leadsto color c light-green

5. Top-Down Coloring

Lemma

When coloring a component C_i a configuration can only change from white to colored, and from each light-color to the corresponding full-color.

Theorem (Bollig, Leucker, Weber)

The top-down coloring process terminates and c_0 has color green/red iff \exists loise/ \forall belard has a positional winning strategy.

Further properties of the top-down coloring:

- Full on-the-fly algorithm (optimal)
- Quadratic complexity (sub-optimal)

6. Parallelization

Let us consider n machines (PCs in a cluster, etc.):

- Game graph distribution:
 - Size of game graph unknown when starting algorithm
 - Assume hash function f
 - Machine i stores configuration c iff $f(c) \mod n = i$ (additionally successors and predecessors of c are stored on machine i)
- Game graph construction:
 - Use breadth-first search (easy to parallelize with above distribution)
- Coloring (both bottom-up and top-down):
 - Process components sequentially, but color each component in parallel
 - as soon as terminal state is detected during game graph construction start backwards coloring process (in parallel)
 - if coloring of component is done, recolor white and light-color configurations (in parallel)

6. Parallelization

Some notes on parallelization:

- Cycle detection is inherently sequential (but required for model checking via NBAs)
- Coloring algorithm does not need cycle detection, but parallel termination detection
- ⇒ Algorithms for parallel termination detection available
 (e.g. DFG token termination algorithm of Dijkstra, Feijen, Gasteren)

Summary

- μ -calculus is expressive logic (subsumes CTL*, NBAs)
- μ -calculus is based on least- and greatest fixpoint operators
- direct model-checking algorithm based on set-operations, complexity is exponential in alternation depth
- model-checking via games (winning strategy of ∃loise or ∀belard)
- bottom-up and top-down (parallel) on-the-fly coloring algorithms for alternation free formulas