mputational
gic

Model Checking

René Thiemann

Institute of Computer Science

University of Innsbruck

SS 2008

RT (ICS @ UIBK) week 3 1/59

Qutline

@ Overview

@ Monotone Functions and Fixpoints

@ u-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm

@ u-Calculus: Alternation Depth and Improved Model-Checking Algorithm
@ ;-Calculus: Games for Model-Checking

@ Summary

RT (ICS @ UIBK) week 3 2/59

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss08/mc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Model-Checking for Different Logics

LTL model-
checker (NBAs)

CTL model-
checker (BDDs)

Yal model-
checker (YATs)

Yal formula

A

4

p-calculus
formula

p-calculus
model-checker

i

ECNER) week 3 4/59

fi-calculus

e \Very expressive

= many logics can be translated into u-calculus
o Efficient (parallel) model-checking algorithms
e Based upon fixpoints

e Not very human-readable

= use p-calculus mainly for model-checking of other logics
and not for direct specification

SEECNER) week 3 5/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Fixpoints

Let 7: D — D be a function over some domain D
e d € D is fixpoint of 7 iff 7(d) = d
e Not every function has a fixpoint
e Some functions have more than one fixpoint
Let D be equipped with a partial order <

e d is least fixpoint of 7 (/fp(7)) iff
7(d) = d and d < e for all other fixpoints e of T

e d is greatest fixpoint of 7 (gfp(7)) iff
7(d) = d and e < d for all other fixpoints e of T

SHEENER) week 3 7/59

Monotone Functions

Let D be a domain with partial order <.
e A function 7: D — D is monotone iff d < e = 7(d) < 7(e)

Examples:
e x2 is monotone over the naturals, but not over the integers
e For D=2° < =C, and arbitrary Y € D, i.e., Y C S:

e 71(X)=XNY is monotone
e 7»(X)=XUY is monotone
e 73(X) = D\ X is not monotone

e Remark:

e 71,7 have both least and greatest fixpoints
e 73 does not have a single fixpoint if S #£ &

RT (ICS @ UIBK) week 3 8/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monotone Functions and Fixpoints

Existence and Computation of Fixpoints

Theorem (Knaster, Tarski)

Let S be a finite set, let D = 2° be ordered by C, letT:D — D.
If T is monotone then

o Ifp(r) = 71°\(2)
o gfp(r) = 71°(S)

RT (ICS @ UIBK) week 3 9/59

Monotone Functions and Fixpoints
Proof

RT (ICS @ UIBK) week 3 10/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary of Fixpoints

o X is fixpoint of 7 iff 7(X) = X
e Function 7 : 2% — 2° is monotone iff X C Y implies 7(X) C 7(Y)
(union and intersection are monotone, complement is not monotone)

e If S is finite and 7 monotone then 7 has least and greatest fixpoint:
o Ifo(r) =1°(2)
o gfp(1) = 71°I(S)

RT (ICS @ UIBK) week 3 11/59

A Small Change in Transition Systems

Transition systems may now have labeled edges:
A transition system TS is a tuple

(S, Act,—, 1, AP, L)

where

S is a set of states

Act is a set of actions

e — C S x Act x S is a transition relation

| C S is a set of initial states

AP is a set of atomic propositions

L : S — 24P is a labeling function

RT (ICS @ UIBK) week 3 13/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

RT (ICS @ UIBK) week 3 14/59

1-Calculus
Let TS = (S, Act,—, I, AP, L) be a transition system.

Let V = {x,y,...} be a set of variables (ranging over sets of states)

Definition (u-Calculus Syntax)

A formula of the p-calculus (L,-formula) has one of the following forms:
e p where p € AP

°* YN, PNV P, Dy
(a) where a € Act there is an a-successor satisfying ¢

[a]¢ where a € Act all a-successors satisfy
e x where x € V

e 1x.0 where x € V least fixpoint
e vx.o where x € V greatest fixpoint

In last two cases, x may only occur in ¢ under an even number of negations
Binding priority: {1, (-), [1} 7 {A, v} 3 {u, v}

SEECNER) week 3 15/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

1-Calculus

Let TS = (S, Act,—, 1, AP, L) be a transition system.

Let V = {x,y,...} be a set of variables (ranging over sets of states).
Let « : V — 2° be a variable assignment

Definition (u-Calculus Semantic)
For each L,-formula and variable assignment define the satisfiability set as
* [pla={slpeLls);
e [ernd]a=lelanl¥]a
e [evela=lelaUlv]a
e [-¢]a=5\[¢la
o [(a)p]a ={s|thereiss—=tand t € [¢]a}
o [[a]¢]a = {s | whenever s <>t then t € []a}
° [x]a =a(x)
o [px.o]a = ifp(T) where 7:2° — 2% 7(X) = [lape=x]
o [vx.p]a = gfp(7) where 7:2°5 — 25 7(X) = [¢ lap=x]

RT (ICS @ UIBK) week 3 16/59

A Note on Well-Definedness

e Example:
For ux.—x obtain 7(X) =S\ X = nolfp = no[ux.—x]a

However, p1x.—x is not a L,-formula
(x occurs under an odd number of negations)

e Semantic is well-defined iff both
o Ifp(7) and
* gfp(7)
exist where 7 is defined as 7(X) = [¢ Japx=x]

e Requirement of even number of negations ensures that 7 is monotone!
Knaster & Tarski ensures that both /fp(7) and gfp(7) exist

4

Semantic is well-defined

=

RT (ICS @ UIBK) week 3 17/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Model-Checking for the p-Calculus

e A L,-formula is closed iff it does not contain free variables
= For closed formulas « is not required

= Define model relation for closed formulas:

TSE ¢ iff I Cle]

Naive Model-Checking Algorithm:
o Just compute [¢] by directly applying the definition of the semantics
in a top-down way
e To compute fixpoints use Knaster & Tarski
o Ifp(7) = 71°1(2)
- gfp(r) = 7191(5)
e Model-Checking for u-calculus boils down to simple set operations

RT (ICS @ UIBK) week 3 18/59

Naive MC-Algorithm for the u-Calculus

Input: A closed L,-formula ¢ and
a transition system TS = (S, Act, —, 1, AP, L)
Output: The boolean value of TS |= ¢

Global variable: a : V(p) — 2°

function model_check((p)
return /| C sem(y)

procedure reset(x)
if x is p-variable then a(x) := & else a(x) := S

RT (ICS @ UIBK) week 3 19/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Naive MC-Algorithm for the p-Calculus
function sem(y)
case ¢ of

x : return o(x)

p:return {s | p € L(s)}

—) : return S\ sem())

1 A o - return sem(t1) N sem(e)y)

Y1 V ¥y : return sem(1)1) U sem(1)2)

(a)y) : return {s|3ds—t,t € sem(v))}

[a]1) : return {s | Vst t € sem(¢)}

QRx.Y :
reset(x)
while true do
U := a(x)
V = sem(%))
if U=V then return U else a(x) :=V
RT (ICS @ UIBK) week 3 20/59
Example

Computing [] for ¢ = ux.[blvy.x V (a)y and the following TS.

|

a p a p a q
O X2l B3 Xal Xs)obe
b b b b

[l | ax) | [[blvyxV(ayla | [vyxVia)yla | aly) | [xV{a)y]a | [{a)y]a
1] v v v v v v v
2| v v v v v v v
3| v v v v v v v
4| v v v v v v
5

Hence, [¢] ={1,2,3,4} and TS |= .
Complexity of naive algorithm:

O((ITS] - [¢]))

RT (ICS @ UIBK) week 3 21/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Encoding of Logics into p-Calculus

Theorem
Every CTL-formula can be translated into a closed L,,-formula.

Proof.

W.l.0.g. all transitions are labeled by “a" (CTL cannot distinguish these)
o AXp -~ [a]p

e EXp~(a)p

o ApUrh ~ uxap V (p Alalx)

* EpUy ~ uxyp V(o A{a)x)

e AGy ~ vx.p A [a]x

|
Problem: Resulting complexity is exponential, although CTL-model
checking has linear complexity.
RT (ICS @ UIBK) week 3 22/59

Example
Computing [ux.ppx] for the following TS where

pox = qV (a)uy.py
0y =pA{a)(xVy)

a a P a P a q
O e B X8 Xs)one
b b b b

| [axexd | a0 | Texd | Tal | [@uy-o,1 | Luv-oy1 | o) | Loyl | Ip1 | [@GVNIT | [xVyl

a b w N =

Complexity of improved algorithm:

O((I 7S] - l#l)")

RT (ICS @ UIBK) week 3 24/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Positive Normal Form

L,-formula ¢ is in positive normal form (PNF) iff every variable is bound
at most once and “=" only occurs before propositions p

Theorem
Every closed L,-formula can be translated into positive normal form.

Proof.

* (pAY)~ =V
e (V) oAy
e ()

e (a)p ~ [a]p

e —[a]p ~ (a)—p

o —UX.p ~> UX.—p[x/—x]
o —WwX.p ~ uX.p[x/—x]

e —x does not occur due to “even number of negations”-condition

ECNER) week 3 25/59

Example

RT (ICS @ UIBK) week 3 26/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Improved MC-Algorithm for the p-Calculus [Emerson,Lei]

Input: A closed L,-formula ¢ in PNF and
a transition system TS=(S,/,... L)
Output: The boolean value of TS = ¢

Global variables: o : V(¢) — 2°
Valid € V(¢) // x € Valid implies a(x) = [Qx.¢x Ja

function model_check(y)
Valid := @
for all x € V(¢) do reset(x)
return | C sem(y)

procedure reset(x)
if x is p-variable then a(x) := @ else a(x) := S

RT (ICS @ UIBK) week 3 27/59

Improved MC-Algorithm for the p-Calculus [Emerson,Lei]
function sem(y)
case ¢ of

x : return a(x)

p:return {s|p € L(s)}

—p:return {s|p¢ L(s)}

Y1 Ay - return sem(1)1) N sem(1))

Y1 V 1y - return sem(1)1) U sem(1)2)

(a)y) : return {s|3ds—t,t € sem(v))}

[a]t) : return {s | Vst t € sem(¥)}

@x.1 : if x € Valid then return o(x) else while true do

U:= a(x);V :=sem(v)

if U=V then
Valid := Valid U {x}; return U
else

a(x) := V; touch(Qx.7))

RT (ICS @ UIBK) week 3 28/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Improved MC-Algorithm for the p-Calculus [Emerson,Lei]

procedure touch(Q'x.¢x)
Valid := Valid \ {y | Qy.¢, € Sub(px),x € FV(¢y)}
Reset := {y | Qy.¢, € Sub(px),x € FV(py), Q # Q'}
while z € {z | Jy € Reset, Qz.¢, € Sub(p,), FV(p,) N Reset # @} do
Reset := Reset U {z}
for all y € Reset do reset(y)
Valid := Valid \ Reset

o FV(p) is the set of free variables of
o Sub(yp) is the set of sub-formulas of ¢

e o, is the unique formula which is the argument of “Qx."

ECNER) week 3 29/59

l[lustration of touch

RT (ICS @ UIBK) week 3 30/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

Computing [vz.,] for the following TS where

©r =z N (@) phx.px
Px = q \% <a>:u)/-90y
py =pA{a)(xVy)

d

a P a P a q
OO OWS O
b b b b

RT (ICS @ UIBK) week 3 31/59

Complexity of the Algorithm

Definition (Alternation Depth)

Variable x depends on y in ¢ (x <, y) iff
@ contains subformula @ x.1 and y is a free variable of 1.

The alternation depth of a formula ¢ in PNF is defined as ad(¢) = n where
n is the largest number such that x; <, -+ <, x, and
the type of x; is different to the type of xj; for every i < n.

A formula with ad(y) < 1 is called alternation free.

Theorem
The algorithm of Emerson and Lei is sound and has complexity

O((ITS| - [¢])22)).

Efficient implementations available using binary decision diagrams (BDDs)

RT (ICS @ UIBK) week 3 32/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

ad(qVv{a)p) =

ad(ux.q V (a)(py-p A(a)(x Vy))) =

ad(vz.z N {a)(ux.qV (a)uy.p A (a)(xVy))) =
ad(ux.[blvy.xV (a)y) =

ad(vx.uy.y ANx A\ (vz.z) Nvu.(uhx)) =
ad(vx.uy.y ANx A\ (vz.z) ANvu(uNy)) =

RT (ICS @ UIBK) week 3 33/59

Proof of Soundness

One crucial point is to use a stronger variant of Knaster-Tarski:

Theorem (Variant of Knaster-Tarski)

Let S be a finite set, let D = 2° be ordered by C, letT:D — D.
If T is monotone then

o Ifp(t) = 7ISW(T) if T C 7(@) for some k
o gfp(r) = 7I°(T) if T D 7%(S) for some k

Then the soundness of the algorithm can be proven by induction on ¢
using the following invariants:

SEECNER) week 3 34/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Encoding of Logics into p-Calculus

Theorem
Every CTL-formula can be translated into an alternation free L,-formula.

Proof.

o EpUd = xtb V (9 A {a)x)
e AGyp ~ vx.p Ala]x

Resulting formula has only trivial dependencies x < x. |

= CTL-model checking via pu-calculus has linear
and hence, optimal complexity

Theorem
Every CTL*-formula can be translated into a L,-formula
with alternation depth 2.

RT (ICS @ UIBK) week 3 35/59

Overview

Current approach:
e Formula ~» L,-formula ~» PNF ~+ Emerson Lei MC (BDDs)

e Global approach - whole transition system required and processed

Upcoming approach:
e Formula ~» L,-formula ~» PNF ~~ MC based on Games
e Sequential algorithm for alternation free formulas
e Local approach - only parts of transition system required, on-the-fly
e Parallel algorithm for alternation free formulas

e (Not shown: algorithm for formulas with alternation depth 2)

Obtain efficient model-checker for p-calculus, CTL, CTL*, ...

RT (ICS @ UIBK) week 3 37/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview of Games for Model-Checking

PNF ~~ graph

Graph X transition sytem ~» game graph
Model-checking = determining winner of game
Bottom-up sequential algorithm to determine winner

Top-down sequential algorithm to determine winner

G B~ P =

Parallelization

RT (ICS @ UIBK) week 3 38/59

1. From closed L,-formula in PNF to graph

e First write down a given formula ¢ as a tree where

e Each formula has as successors its direct subformulas
e —p is seen as an atomic formula

e Then obtain a graph by adding edges from each x to Qx.px

= Nodes of the graph are Sub(yp) where duplicates are allowed
(e.g., node p A p has two successors p, each p being a separate node)

¢ alternation free: Partition graph into components Q1, ..., Q, such that
e Each Q; has only edges to Q; U Q11 U---U Q,

e Each Q; contains only u-formulas or only v-formulas
(then we call Q; pu-component or v-component)

Algorithm: Perform SCC decomposition,
then merge singleton nodes into adjoint component

RT (ICS @ UIBK) week 3 39/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

RT (ICS @ UIBK) week 3 40/59

2. PNF + Transition System = Game Graph

Two player games:
e Players Vbelard and dloise
e Game graph is directed graph where nodes are called configurations
The set of configurations C is partitioned into C = Cypelard ¥ Coioise

e A play is infinite or maximal finite sequence of configurations
g — C — C — ...

If ¢; € Cybelard then Vbelard can choose cjy1, same for dloise

Here:

e Game graph for TS = (S, Act,—, 1 = {sp}, AP, L) and ¢ has
configurations C = S x Sub(yp), initial configuration ¢y = (sp, ©)
(similar to tabular of Emerson Lei algorithm, but here only reachable
part has to be computed! = on-the-fly algorithm)

e Vbelard wants to show s ¢ [¢], Jloise wants to show s € []
41/59

RT (ICS @ UIBK) week 3

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Game Graph

Th

1.

RS o & N

e edges of the game graph are determined as follows:

If ¢ = (s,%1 A7) then Vbelard can move to (s,11) or (s, 1)
If ¢ = (s, [a]y) then Vbelard can move to (t,v) for some s <>t
If ¢ = (s,vx.1) then the successor is (s, 1))

If ¢ = (s, x) then the successor is (s, Qx.¢x)

If ¢ = (5,91 V 17) then Jloise can move to (s, 1) or (s,1»)

If ¢ = (s, (a))) then Jloise can move to (t,v) for some s <>t
If ¢ = (s, ux.1)) then the successor is (s, 1))

If ¢ = (s,p) or c = (s,—p) then the play is finished

Configurations in cases 1-4 belong to Vbelard, cases 5-8 belong to dloise

(in

cases 3,4,7,8 this is not important, as there is no choice)

RT (ICS @ UIBK) week 3

so,vy.(b)y sp, vw.[blw

S, (b)y Q2 S2, [b]W Q4

RT (ICS @ UIBK) week 3

42/59

43/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Playing a Game

Given a play ¢g < ¢; < ... there are two possibilities:
e If play is finite, ¢, = (s, %) is last configuration then Vbelard wins iff
o 1) = (a)x (since there is no successor by maximality of play)

e py=pandp¢ L(s)ory=-pandpeL(s)
In all other finite plays dloise wins

e Vbelard/dloise wins an infinite play iff the maximal subformula that is
visited infinitely often is a u/v-formula

RT (ICS @ UIBK) week 3 4459

Strategies

A strategy Str of a player is a function which takes an initial part of a play
which ends in a configuration which belongs to that player and returns the
configuration where the player wants to move to. Formally:

Str: C* Cplayer — CU{L} such that for all cp...cp € C" Cppaper:
o If Str(cy...cn) € C then ¢, — Str(cp. .. cp) is allowed move

o If Str(cy...cn) = L then ¢, has no successor

Note that a strategy of player uniquely determines all moves of that player
for any given play; we then speak of a Str-play

A strategy Str of a player is a winning strategy if for each Str-play that
player is the winner

A strategy Str is positional, if Str only considers the last configuration,
i.e., Str i Cpopayer — CU{L}

RT (ICS @ UIBK) week 3 45/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Strategies

ECNER) week 3 46/59

3. Model Checking by Games

Theorem (Stirling)

For each formula ¢ and each transition system TS:
o if TS = ¢ then loise has a positional winning strategy
o if TS}~ ¢ then Vbelard has a positional winning strategy

Algorithmic approach for model checking

e Color configuration of game-graph by green/red if Jloise/Vbelard has
winning strategy when starting from that configuration

o TS |= ¢ iff color of ¢y is green

STEENER) week 3 47/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

4. Bottom-Up Coloring

We only consider alternation free formulas
Remember: Then graph for formula (and also game-graph) can be
partitioned into components (i, ..., C, such that

e all components have only pu-formulas or only v-formulas
e all edges of Cj lead to C;U---U C,

Thus, every play starting in C; will either
1. leave C; and continue in some Cj.x, k >0

2. reach a terminal configuration in C;
(terminal configuration = configuration without successors)

3. stay in C; forever

In case 1, the winner can be determined by the color of the configuration
that is visited first in Cjy g

In case 2, the terminal configuration specifies the winner

In case 3, Vbelard/3loise wins iff C; is j1/v-component

EERER) week 3 48/59

4. Bottom-Up Coloring

Hence, perform the following coloring process:

e every terminal configuration c is colored
by red if the play c is won by Vbelard and by green, otherwise

e colors are propagated bottom-up:
let ¢ be configuration with successors ci, ..., ¢y, with m >0

¢ € C3joise, SOMe ¢; green ~- color ¢ green
¢ € C3ioise, all ¢; red ~ color ¢ red

¢ € Cypelard, SOmMe ¢; red ~ color ¢ red

¢ € Cybelard, all ¢; green ~~ color ¢ green

o If all colors of Ciy1,...,C, are determined and no propagation is
possible for configurations of C; then

e color all white nodes of C; by red if C; is u-component
e color all white nodes of C; by green if C; is v-component

RT (ICS © UIBK) week 3 49/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Q2 Q4

RT (ICS @ UIBK) week 3 50/59

4. Bottom-Up Coloring

Lemma
Once a configuration has a color, it will never be changed.

Theorem (Bollig, Leucker, Weber)

The bottom-up coloring process terminates and ¢y has color green/red iff
dloise/Vbelard has a positional winning strategy.

Further properties of the bottom-up coloring algorithm:
e Linear complexity (optimal)

e Every configuration is considered (half on-the-fly)

RT (ICS @ UIBK) week 3 51/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

5. Top-Down Coloring
Overview:

e Directly start with top component (;
o Let (; be pu-component (v-components are treated dually)
e If play ends in (; then winner can be determined
e If play stays in (; then Jloise looses
= Goal of dloise is to leave C; (or reach green terminal configuration)
e |dea: Make successors of C; outside C; attractive
= color these nodes with light-green (optimistic assumption)
e Then propagate colors in (;
e Result after coloring configurations in (3
e configurations with full-color have correct color (as in bottom-up)
e configurations with white color become red (as in bottom-up)
e if initial configuration has full-color then done
e otherwise initial configuration has light-green color:
then remove all light-green colors from (i, pick some successor
component C, of C; with assumed light-green initial configuration and
determine the (full) color of Cy's initial configurations;
afterwards color C; again, ...

EERER) week 3 52/59

5. Top-Down Coloring

Details on coloring process:
e every terminal configuration obtains full color (as in bottom-up)

e colors are propagated similar to bottom-up:
let ¢ be configuration with successors ci,...,cyn with m >0

e ¢ € (gppise, SOMe ¢; green ~~ color ¢ green

¢ € Coioise, SOMe ¢ light-green, no ¢; green ~~ color c light-green

¢ € Cyjoise, all ¢; red ~~ color ¢ red

¢ € Cooise, all ¢; red or light-red, some ¢; light-red ~ color c light-red
¢ € Cypelard, SOmMe ¢; red ~ color ¢ red

¢ € Cypelard, some ¢; light-red, no ¢; red ~~ color c light-red

¢ € Cybelard, all ¢; green ~~ color ¢ green

¢ € Cyubelard, all ¢; green or light-green, some ¢; light-green ~ color ¢
light-green

RT (ICS © UIBK) week 3 53/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

sy, vz.(vw.[blw) V (a)z

ECNER) week 3 54/59

5. Top-Down Coloring

Lemma
When coloring a component C; a configuration can only change from white
to colored, and from each light-color to the corresponding full-color.

Theorem (Bollig, Leucker, Weber)

The top-down coloring process terminates and ¢y has color green/red iff
Jloise/Vbelard has a positional winning strategy.

Further properties of the top-down coloring:
o Full on-the-fly algorithm (optimal)

e Quadratic complexity (sub-optimal)

RT (ICS @ UIBK) week 3 55/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

6. Parallelization

Let us consider n machines (PCs in a cluster, etc.):
e Game graph distribution:

e Size of game graph unknown when starting algorithm
e Assume hash function f
e Machine / stores configuration c iff f(¢) mod n =
(additionally successors and predecessors of ¢ are stored on machine /)

e Game graph construction:

o Use breadth-first search (easy to parallelize with above distribution)

o Coloring (both bottom-up and top-down):

e Process components sequentially, but color each component in parallel

e as soon as terminal state is detected during game graph construction
start backwards coloring process (in parallel)

e if coloring of component is done, recolor white and light-color
configurations (in parallel)

RT (ICS @ UIBK) week 3 56,/59

6. Parallelization

Some notes on parallelization:

e (Cycle detection is inherently sequential
(but required for model checking via NBAs)

e Coloring algorithm does not need cycle detection,
but parallel termination detection

= Algorithms for parallel termination detection available
(e.g. DFG token termination algorithm of Dijkstra, Feijen, Gasteren)

RT (ICS @ UIBK) week 3 57/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

o p-calculus is expressive logic (subsumes CTL*, NBAs)
e p-calculus is based on least- and greatest fixpoint operators

e direct model-checking algorithm based on set-operations,
complexity is exponential in alternation depth

e model-checking via games (winning strategy of Jloise or Vbelard)

e bottom-up and top-down (parallel) on-the-fly coloring algorithms for
alternation free formulas

RT (ICS @ UIBK) week 3 59/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Overview
	Monotone Functions and Fixpoints
	-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm
	-Calculus: Alternation Depth and Improved Model-Checking Algorithm
	-Calculus: Games for Model-Checking
	Summary

