

Model Checking

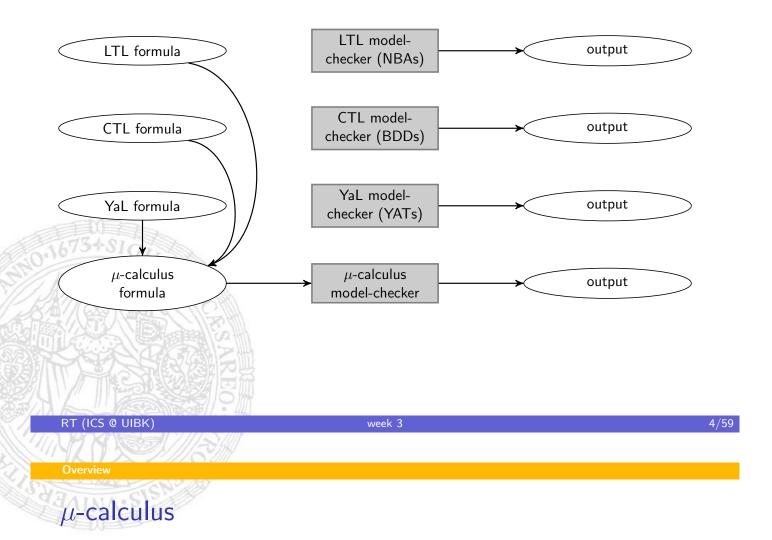
René Thiemann

Institute of Computer Science University of Innsbruck

week 3

- Overview
- Monotone Functions and Fixpoints
- μ -Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm
- μ -Calculus: Alternation Depth and Improved Model-Checking Algorithm
- *µ*-Calculus: Games for Model-Checking
- Summary

Model-Checking for Different Logics



- Very expressive
- $\Rightarrow\,$ many logics can be translated into $\mu\text{-calculus}$
 - Efficient (parallel) model-checking algorithms
 - Based upon fixpoints
 - Not very human-readable
- \Rightarrow use μ -calculus mainly for model-checking of other logics and not for direct specification

Fixpoints

Let $\tau: D \to D$ be a function over some domain D

- $d \in D$ is fixpoint of τ iff $\tau(d) = d$
- Not every function has a fixpoint
- Some functions have more than one fixpoint

Let D be equipped with a partial order \leq

- d is least fixpoint of τ (*lfp*(τ)) iff
- au(d)=d and $d\leqslant e$ for all other fixpoints e of au
- d is greatest fixpoint of τ (gfp(τ)) iff
 τ(d) = d and e ≤ d for all other fixpoints e of τ

RT (ICS @ UIBK)

Monotone Functions and Fixpoints

Monotone Functions

Let *D* be a domain with partial order \leq .

• A function $\tau: D \to D$ is monotone iff $d \leq e \Rightarrow \tau(d) \leq \tau(e)$

week 3

Examples:

- x^2 is monotone over the naturals, but not over the integers
- For $D = 2^S$, $\leq \leq \leq$, and arbitrary $Y \in D$, i.e., $Y \subseteq S$:
 - $\tau_1(X) = X \cap Y$ is monotone
 - $\tau_2(X) = X \cup Y$ is monotone
 - $au_3(X) = D \setminus X$ is not monotone

• Remark:

- au_1, au_2 have both least and greatest fixpoints
- au_3 does not have a single fixpoint if S
 eq arnothing

Existence and Computation of Fixpoints

Theorem (Knaster, Tarski) Let S be a finite set, let $D = 2^{S}$ be ordered by \subseteq , let $\tau : D \to D$. If τ is monotone then $f(\tau) = \tau^{|S|}(\emptyset)$ $gfp(\tau) = \tau^{|S|}(S)$ Rt (CS UBK) velocities and Expose

Proof

Summary of Fixpoints

- X is fixpoint of τ iff $\tau(X) = X$
- Function $\tau : 2^S \to 2^S$ is monotone iff $X \subseteq Y$ implies $\tau(X) \subseteq \tau(Y)$ (union and intersection are monotone, complement is not monotone)
- If S is finite and τ monotone then τ has least and greatest fixpoint:

$$fp(\tau) = \tau^{|S|}(\varnothing)$$

$$gfp(\tau) = \tau^{|S|}(S)$$

RT (ICS @ UIBK)

 $\mu\text{-}\mathsf{Calculus:}$ Syntax, Semantic, and Naive Model-Checking A

A Small Change in Transition Systems

Transition systems may now have labeled edges: A *transition system TS* is a tuple

$$(S, Act, \rightarrow, I, AP, L)$$

week 3

where

- S is a set of states
- Act is a set of actions
- $\rightarrow \subseteq S \times Act \times S$ is a transition relation
- $I \subseteq S$ is a set of initial states
- AP is a set of atomic propositions
- $L: S \rightarrow 2^{AP}$ is a labeling function

Example

µ-Calculus: Syntax, Semantic, and Naive Model-Checking A

μ -Calculus

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system. Let $\mathcal{V} = \{x, y, ...\}$ be a set of variables (ranging over sets of states)

Definition (μ -Calculus Syntax)

A formula of the μ -calculus (L_{μ} -formula) has one of the following forms:

- p where $p \in AP$
- $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$
- $\langle a \rangle \varphi$ where $a \in Act$
- $[a] \varphi$ where $a \in Act$
- x where $x \in \mathcal{V}$
- $\mu x.\varphi$ where $x \in \mathcal{V}$
- $\nu x.\varphi$ where $x \in \mathcal{V}$

there is an a-successor satisfying φ

all a-successors satisfy φ

least fixpoint

greatest fixpoint

In last two cases, x may only occur in φ under an even number of negations Binding priority: $\{\neg, \langle \cdot \rangle, [\cdot]\} \supseteq \{\wedge, \lor\} \supseteq \{\mu, \nu\}$

μ -Calculus

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

Let $\mathcal{V} = \{x, y, ...\}$ be a set of variables (ranging over sets of states). Let $\alpha : \mathcal{V} \to 2^S$ be a variable assignment

Definition (µ-Calculus Semantic)

For each L_{μ} -formula and variable assignment define the satisfiability set as

•
$$\llbracket p \rrbracket_{\alpha} = \{s \mid p \in L(s)\}$$

• $\llbracket \varphi \land \psi \rrbracket_{\alpha} = \llbracket \varphi \rrbracket_{\alpha} \cap \llbracket \psi \rrbracket_{\alpha}$
• $\llbracket \varphi \lor \psi \rrbracket_{\alpha} = \llbracket \varphi \rrbracket_{\alpha} \cup \llbracket \psi \rrbracket_{\alpha}$
• $\llbracket \varphi \lor \psi \rrbracket_{\alpha} = S \land \llbracket \varphi \rrbracket_{\alpha}$
• $\llbracket \neg \psi \rrbracket_{\alpha} = S \land \llbracket \varphi \rrbracket_{\alpha}$
• $\llbracket \langle a \rangle \varphi \rrbracket_{\alpha} = \{s \mid \text{there is } s \xrightarrow{a} t \text{ and } t \in \llbracket \varphi \rrbracket_{\alpha}\}$
• $\llbracket \langle a \rangle \varphi \rrbracket_{\alpha} = \{s \mid \text{there is } s \xrightarrow{a} t \text{ then } t \in \llbracket \varphi \rrbracket_{\alpha}\}$
• $\llbracket \langle a \rangle \varphi \rrbracket_{\alpha} = \{s \mid \text{whenever } s \xrightarrow{a} t \text{ then } t \in \llbracket \varphi \rrbracket_{\alpha}\}$
• $\llbracket x \rrbracket_{\alpha} = \alpha(x)$
• $\llbracket \mu x. \varphi \rrbracket_{\alpha} = lfp(\tau) \text{ where } \tau : 2^{S} \rightarrow 2^{S}, \tau(X) = \llbracket \varphi \rrbracket_{\alpha[x:=X]}$
• $\llbracket \nu x. \varphi \rrbracket_{\alpha} = gfp(\tau) \text{ where } \tau : 2^{S} \rightarrow 2^{S}, \tau(X) = \llbracket \varphi \rrbracket_{\alpha[x:=X]}$

 μ -Calculus: Syntax, Semantic, and Naive Model-Checking A

A Note on Well-Definedness

• Example:

For $\mu x. \neg x$ obtain $\tau(X) = S \setminus X \implies$ no $\llbracket \mu x. \neg x \rrbracket_{\alpha}$

However, $\mu x. \neg x$ is not a L_{μ} -formula (x occurs under an odd number of negations)

- Semantic is well-defined iff both
 - lfp(au) and
 - gfp(au)

exist where τ is defined as $\tau(X) = \llbracket \varphi \rrbracket_{\alpha[x:=X]}$

- Requirement of even number of negations ensures that τ is monotone!
- \Rightarrow Knaster & Tarski ensures that both $lfp(\tau)$ and $gfp(\tau)$ exist
 - Semantic is well-defined

Model-Checking for the $\mu\text{-Calculus}$

- A L_{μ} -formula is closed iff it does not contain free variables
- \Rightarrow For closed formulas α is not required
- \Rightarrow Define model relation for closed formulas:

$$TS \models \varphi$$
 iff $I \subseteq \llbracket \varphi \rrbracket$

Naive Model-Checking Algorithm:

- Just compute [[φ]] by directly applying the definition of the semantics in a top-down way
- To compute fixpoints use Knaster & Tarski

•
$$Ifp(\tau) = \tau^{|S|}(\varnothing)$$

- $gfp(\tau) = \tau^{|S|}(S)$
- Model-Checking for μ -calculus boils down to simple set operations

week 3

```
RT (ICS @ UIBK)
```

 μ -Calculus: Syntax, Semantic, and Naive Model-Checking A

Naive MC-Algorithm for the μ -Calculus

Input:	A closed ${\it L}_{\mu}$ -formula $arphi$ and		
	a transition system $TS = (S, Act, \rightarrow, I, AP, L)$		
Output:	The boolean value of $TS \models arphi$		
Global variable:	$lpha:\mathcal{V}(arphi) ightarrow 2^{\mathcal{S}}$		

```
function model_check(\varphi)
return I \subseteq sem(\varphi)
```

```
procedure reset(x)
```

if x is μ -variable then $\alpha(x) := \emptyset$ else $\alpha(x) := S$

Naive MC-Algorithm for the μ -Calculus function sem(φ) case φ of x : return $\alpha(x)$ p : return $\{s \mid p \in L(s)\}$ $\neg \psi :$ return $S \setminus \text{sem}(\psi)$ $\psi_1 \land \psi_2 :$ return sem $(\psi_1) \cap \text{sem}(\psi_2)$ $\psi_1 \lor \psi_2 :$ return sem $(\psi_1) \cup \text{sem}(\psi_2)$

$$\psi_1 \lor \psi_2 : \operatorname{return sem}(\psi_1) \cup \operatorname{sem}(\psi_2)$$

$$\langle a \rangle \psi : \operatorname{return } \{s \mid \exists s \xrightarrow{a} t, t \in \operatorname{sem}(\psi)\}$$

$$[a] \psi : \operatorname{return } \{s \mid \forall s \xrightarrow{a} t : t \in \operatorname{sem}(\psi)\}$$

$$Qx.\psi :$$

$$\operatorname{reset}(x)$$

while true do

$$U := \alpha(x)$$

$$\mathsf{V} := \mathsf{sem}(\psi)$$

if U = V then return U else $\alpha(x) := V$

RT (ICS @ UIBK)

week 3

 μ -Calculus: Syntax, Semantic, and Naive Model-Checking A

Example

Computing $\llbracket \varphi \rrbracket$ for $\varphi = \mu x \cdot [b] \nu y \cdot x \vee \langle a \rangle y$ and the following TS.

Hence, $\llbracket \varphi \rrbracket = \{1, 2, 3, 4\}$ and $TS \models \varphi$. Complexity of naive algorithm:

$$\mathcal{O}((|\mathsf{TS}|\cdot|arphi|)^{|\mathcal{V}(arphi)|})$$

Encoding of Logics into μ -Calculus

Theorem

Every CTL-formula can be translated into a closed L_{μ} -formula.

Proof.

W.I.o.g. all transitions are labeled by "a" (CTL cannot distinguish these)

- $A X \varphi \rightsquigarrow [a] \varphi$
- $\mathsf{E} \mathsf{X} \varphi \rightsquigarrow \langle \mathbf{a} \rangle \varphi$
- A φ U $\psi \rightsquigarrow \mu x. \psi \lor (\varphi \land [a]x)$
- $\mathsf{E} \varphi \mathsf{U} \psi \rightsquigarrow \mu x. \psi \lor (\varphi \land \langle a \rangle x)$
- AG $\varphi \rightsquigarrow \nu x. \varphi \land [a]x$

Problem: Resulting complexity is exponential, although CTL-model checking has linear complexity.

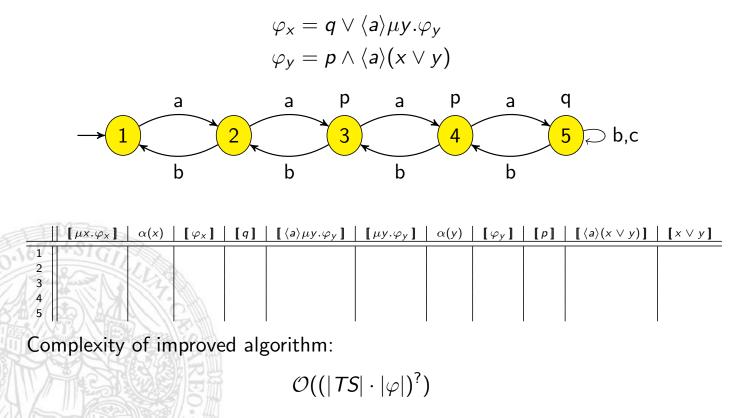
week 3

RT (ICS @ UIBK)

 μ -Calculus: Alternation Depth and Improved Model-Checkin

Example

Computing $\llbracket \mu x.\varphi_x \rrbracket$ for the following TS where



Positive Normal Form

 L_{μ} -formula φ is in positive normal form (PNF) iff every variable is bound at most once and "¬" only occurs before propositions p

Theorem

Every closed L_{μ} -formula can be translated into positive normal form.

Proof.

- $\neg(\varphi \land \psi) \rightsquigarrow \neg \varphi \lor \neg \psi$
- $\neg(\varphi \lor \psi) \rightsquigarrow \neg \varphi \land \neg \psi$
- $\neg(\neg\varphi) \rightsquigarrow \varphi$
- $\neg \langle a \rangle \varphi \rightsquigarrow [a] \neg \varphi$
- $\neg [a] \varphi \rightsquigarrow \langle a \rangle \neg \varphi$
- $\neg \mu x. \varphi \rightsquigarrow \nu x. \neg \varphi[x/\neg x]$
- $\neg \nu x. \varphi \rightsquigarrow \mu x. \neg \varphi[x/\neg x]$
- $\neg x$ does not occur due to "even number of negations"-condition

week 3

RT (ICS @ UIBK)

tion Depth and Improved Model-Checkin

Example

μ -Calculus: Alternation Depth and Improved Model-Checkin

Improved MC-Algorithm for the μ -Calculus [Emerson,Lei]

Input: Output: Global variables	A closed L_{μ} -formula φ in PNF and a transition system $TS = (S, I, \dots, L)$ The boolean value of $TS \models \varphi$: $\alpha : \mathcal{V}(\varphi) \rightarrow 2^{S}$ Valid $\subseteq \mathcal{V}(\varphi) // x \in Valid implies \alpha(x) = \llbracket Qx.\varphi_{x} \rrbracket_{\alpha}$			
function mode	$el_check(arphi)$			
$Valid:= \varnothing$				
for all $x \in \mathcal{X}$	$\mathcal{V}(arphi)$ do reset(x)			
return / ⊆	sem(arphi)			
procedure rese	et(x)			
if x is μ -variable then $\alpha(x) := \emptyset$ else $\alpha(x) := S$				
RT (ICS @ UIBK)	week 3 27/59			
μ -Calculus: Alternation D	epth and Improved Model-Checkin			
CISN CISN	9 			
	C-Algorithm for the μ -Calculus [Emerson,Lei]			
function sem(
function sem(case φ of	$\varphi)$			
function sem(case φ of x : retur	φ) n $\alpha(x)$			
function sem(case φ of x : retur p : retur	arphi) n $lpha(x)$ n $\{s \mid p \in L(s)\}$			
function sem(case φ of x : retur p : retur $\neg p$: retur	arphi) n $\alpha(x)$ n $\{s \mid p \in L(s)\}$ urn $\{s \mid p \notin L(s)\}$			
function sem(case φ of x : retur p : retur $\neg p$: retur $\psi_1 \land \psi_2$	arphi) n $\alpha(x)$ n $\{s \mid p \in L(s)\}$ urn $\{s \mid p \notin L(s)\}$: return sem $(\psi_1) \cap sem(\psi_2)$			
function sem(case φ of x : retur p : retur $\neg p$: retur $\psi_1 \land \psi_2$ $\psi_1 \lor \psi_2$	$\varphi)$ n $\alpha(x)$ n $\{s \mid p \in L(s)\}$ urn $\{s \mid p \notin L(s)\}$: return sem $(\psi_1) \cap$ sem (ψ_2) : return sem $(\psi_1) \cup$ sem (ψ_2)			
function sem(case φ of x : retur p : retur $\neg p$: retur $\psi_1 \land \psi_2$ $\psi_1 \lor \psi_2$ $\langle a \rangle \psi$: re	$\varphi)$ n $\alpha(x)$ n $\{s \mid p \in L(s)\}$ urn $\{s \mid p \notin L(s)\}$: return sem $(\psi_1) \cap$ sem (ψ_2) : return sem $(\psi_1) \cup$ sem (ψ_2) turn $\{s \mid \exists s \xrightarrow{a} t, t \in$ sem $(\psi)\}$			
function sem(case φ of x : retur p : retur $\neg p$: retur $\psi_1 \land \psi_2$ $\psi_1 \lor \psi_2$ $\langle a \rangle \psi$: re $[a] \psi$: ret	$\varphi)$ n $\alpha(x)$ n $\{s \mid p \in L(s)\}$ urn $\{s \mid p \notin L(s)\}$: return sem $(\psi_1) \cap$ sem (ψ_2) : return sem $(\psi_1) \cup$ sem (ψ_2) turn $\{s \mid \exists s \xrightarrow{a} t, t \in$ sem $(\psi)\}$ turn $\{s \mid \forall s \xrightarrow{a} t : t \in$ sem $(\psi)\}$			
function sem(case φ of x : retur p : retur $\neg p$: retur $\psi_1 \land \psi_2$ $\psi_1 \lor \psi_2$ $\langle a \rangle \psi$: re $[a] \psi$: retur $Qx.\psi$: if	$\varphi)$ $n \alpha(x)$ $n \{s \mid p \in L(s)\}$ $arn \{s \mid p \notin L(s)\}$ $: return sem(\psi_1) \cap sem(\psi_2)$ $: return sem(\psi_1) \cup sem(\psi_2)$ $turn \{s \mid \exists s \xrightarrow{a} t, t \in sem(\psi)\}$ $turn \{s \mid \forall s \xrightarrow{a} t : t \in sem(\psi)\}$ $turn \{s \mid \forall s \xrightarrow{a} t : t \in sem(\psi)\}$ $x \in Valid then return \alpha(x) else while true do$			
function sem(case φ of x : retur p : retur $\neg p$: retur $\psi_1 \land \psi_2$ $\psi_1 \lor \psi_2$ $\langle a \rangle \psi$: re $[a] \psi$: retur $Qx.\psi$: if U := v	$\varphi)$ $n \alpha(x)$ $n \{s \mid p \in L(s)\}$ $irm \{s \mid p \notin L(s)\}$ $: return sem(\psi_1) \cap sem(\psi_2)$ $: return sem(\psi_1) \cup sem(\psi_2)$ $turn \{s \mid \exists s \xrightarrow{a} t, t \in sem(\psi)\}$ $turn \{s \mid \forall s \xrightarrow{a} t : t \in sem(\psi)\}$ $f x \in Valid then return \alpha(x) else while true do \alpha(x); V := sem(\psi)$			
function sem(case φ of x : retur p : retur $\neg p$: retur $\psi_1 \land \psi_2$ $\psi_1 \lor \psi_2$ $\langle a \rangle \psi$: ret $[a] \psi$: ret $Qx.\psi$: if U := 0 if $U = 0$	$\varphi)$ In $\alpha(x)$ In $\{s \mid p \in L(s)\}$ Ir $\{s \mid p \notin L(s)\}$ Ir return $sem(\psi_1) \cap sem(\psi_2)$ Ir return $sem(\psi_1) \cup sem(\psi_2)$ turn $\{s \mid \exists s \xrightarrow{a} t, t \in sem(\psi)\}$ turn $\{s \mid \exists s \xrightarrow{a} t: t \in sem(\psi)\}$ Ir $x \in Valid$ then return $\alpha(x)$ else while true do $\alpha(x); V := sem(\psi)$ = V then			
function sem(case φ of x : retur p : retur $\neg p$: retur $\psi_1 \land \psi_2$ $\psi_1 \lor \psi_2$ $\langle a \rangle \psi$: ret $[a] \psi$: ret $Qx.\psi$: if U := 0 if $U = 0$	$\varphi)$ $n \alpha(x)$ $n \{s \mid p \in L(s)\}$ $irm \{s \mid p \notin L(s)\}$ $: return sem(\psi_1) \cap sem(\psi_2)$ $: return sem(\psi_1) \cup sem(\psi_2)$ $turn \{s \mid \exists s \xrightarrow{a} t, t \in sem(\psi)\}$ $turn \{s \mid \forall s \xrightarrow{a} t : t \in sem(\psi)\}$ $f x \in Valid then return \alpha(x) else while true do \alpha(x); V := sem(\psi)$			

$$\alpha(x) := V; \operatorname{touch}(Qx.\psi)$$

Improved MC-Algorithm for the μ -Calculus [Emerson,Lei]

procedure touch($Q'x.\varphi_x$) Valid := Valid \ { $y \mid Qy.\varphi_y \in Sub(\varphi_x), x \in \mathcal{FV}(\varphi_y)$ } Reset := { $y \mid Qy.\varphi_y \in Sub(\varphi_x), x \in \mathcal{FV}(\varphi_y), Q \neq Q'$ } **while** $z \in \{z \mid \exists y \in \text{Reset}, Qz.\varphi_z \in Sub(\varphi_y), \mathcal{FV}(\varphi_z) \cap \text{Reset} \neq \emptyset$ } **do** Reset := Reset $\cup \{z\}$ **for all** $y \in \text{Reset}$ **do** reset(y) Valid := Valid \ Reset • $\mathcal{FV}(\varphi)$ is the set of *free variables* of φ • $Sub(\varphi)$ is the set of sub-formulas of φ • φ_x is the unique formula which is the argument of "Qx."

RT (ICS @ UIBK)

week 3

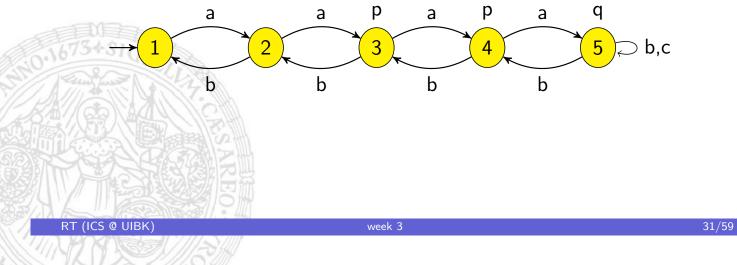
ι-Calculus: Alternation Depth and Improved Model-Checkin

Illustration of touch

Example

Computing $\llbracket \nu z.\varphi_z \rrbracket$ for the following TS where

 $\varphi_{z} = z \land \langle a \rangle \mu x.\varphi_{x}$ $\varphi_{x} = q \lor \langle a \rangle \mu y.\varphi_{y}$ $\varphi_{y} = p \land \langle a \rangle (x \lor y)$



 μ -Calculus: Alternation Depth and Improved Model-Checkin

Complexity of the Algorithm

Definition (Alternation Depth)

Variable x depends on y in φ (x \prec_{φ} y) iff φ contains subformula $Q x.\psi$ and y is a free variable of ψ .

The alternation depth of a formula φ in PNF is defined as $ad(\varphi) = n$ where n is the largest number such that $x_1 \prec_{\varphi} \cdots \prec_{\varphi} x_n$ and the type of x_i is different to the type of x_{i+1} for every i < n.

A formula with $ad(\varphi) \leq 1$ is called alternation free.

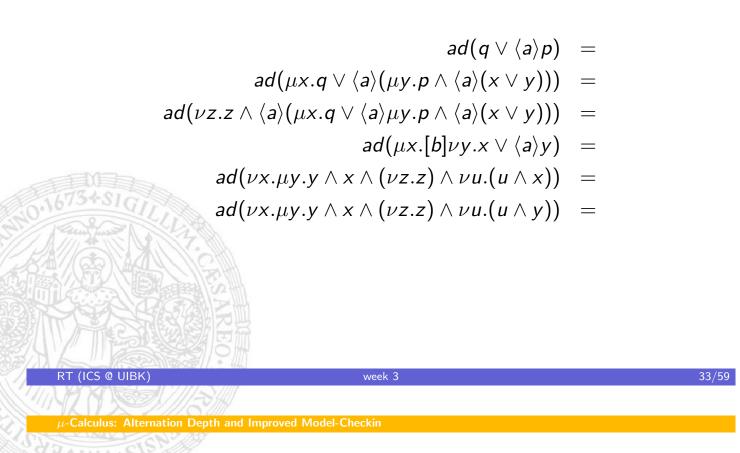
Theorem

The algorithm of Emerson and Lei is sound and has complexity

 $\mathcal{O}((|TS| \cdot |\varphi|)^{\mathsf{ad}(\varphi)}).$

Efficient implementations available using binary decision diagrams (BDDs)

Example



Proof of Soundness

One crucial point is to use a stronger variant of Knaster-Tarski:

Theorem (Variant of Knaster-Tarski) Let S be a finite set, let $D = 2^S$ be ordered by \subseteq , let $\tau : D \to D$. If τ is monotone then

- $lfp(\tau) = \tau^{|S|}(T)$ if $T \subseteq \tau^k(\emptyset)$ for some k
- $gfp(\tau) = \tau^{|S|}(T)$ if $T \supseteq \tau^k(S)$ for some k

Then the soundness of the algorithm can be proven by induction on φ using the following invariants:

Encoding of Logics into μ -Calculus

Theorem

Every CTL-formula can be translated into an alternation free L_{μ} -formula.

Proof.

- . . .
- $\mathsf{E} \varphi \mathsf{U} \psi \rightsquigarrow \mu x. \psi \lor (\varphi \land \langle a \rangle x)$
- A G $\varphi \rightsquigarrow \nu x. \varphi \land [a] x$

Resulting formula has only trivial dependencies $x \prec x$.

 \Rightarrow CTL-model checking via μ -calculus has linear and hence, optimal complexity

Theorem

Every CTL^* -formula can be translated into a L_{μ} -formula with alternation depth 2.

RT (ICS @ UIBK)

 μ -Calculus: Games for Model-Checking

Overview

Current approach:

- Formula $\rightsquigarrow L_{\mu}$ -formula \rightsquigarrow PNF \rightsquigarrow Emerson Lei MC (BDDs)
- Global approach whole transition system required and processed

week 3

Upcoming approach:

- Formula $\rightsquigarrow L_{\mu}$ -formula \rightsquigarrow PNF \rightsquigarrow MC based on Games
- Sequential algorithm for alternation free formulas
- Local approach only parts of transition system required, on-the-fly
- Parallel algorithm for alternation free formulas
- (Not shown: algorithm for formulas with alternation depth 2)

Obtain efficient model-checker for μ -calculus, CTL, CTL*, ...

week 3

Overview of Games for Model-Checking

- 1. PNF \rightsquigarrow graph
- 2. Graph \times transition sytem \rightsquigarrow game graph
- 3. Model-checking = determining winner of game
- 4. Bottom-up sequential algorithm to determine winner
- 5. Top-down sequential algorithm to determine winner
- 6. Parallelization

RT	(ICS @	⊉ UIBK)	
----	--------	---------	--

 μ -Calculus: Games for Model-Checking

1. From closed L_{μ} -formula in PNF to graph

- First write down a given formula φ as a tree where
 - Each formula has as successors its direct subformulas
 - $\neg p$ is seen as an atomic formula
- Then obtain a graph by adding edges from each x to $Qx.\varphi_x$
- ⇒ Nodes of the graph are $Sub(\varphi)$ where duplicates are allowed (e.g., node $p \land p$ has two successors p, each p being a separate node)

week 3

 φ alternation free: Partition graph into components Q_1, \ldots, Q_n such that

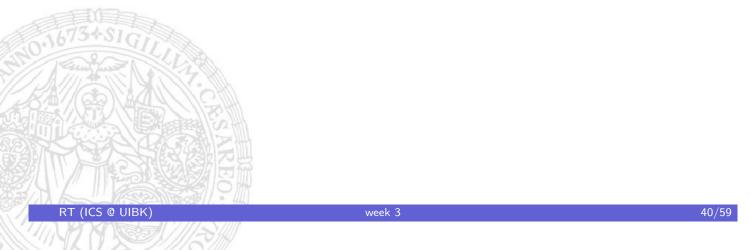
• Each Q_i has only edges to $Q_i \cup Q_{i+1} \cup \cdots \cup Q_n$

 Each Q_i contains only μ-formulas or only ν-formulas (then we call Q_i μ-component or ν-component)

Algorithm: Perform SCC decomposition,

then merge singleton nodes into adjoint component

Example



 μ -Calculus: Games for Model-Checking

2. PNF + Transition System = Game Graph

Two player games:

- Players ∀belard and ∃loise
- Game graph is directed graph where nodes are called configurations The set of configurations C is partitioned into $C = C_{\forall belard} \uplus C_{\exists loise}$
- A play is infinite or maximal finite sequence of configurations

$$c_0 \hookrightarrow c_1 \hookrightarrow c_2 \hookrightarrow \ldots$$

If $c_i \in C_{\forall belard}$ then $\forall belard$ can choose c_{i+1} , same for $\exists loise$

Here:

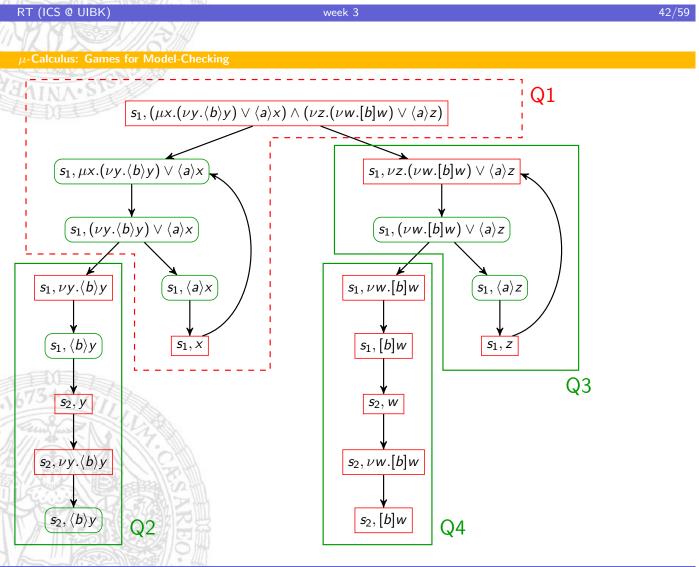
- Game graph for TS = (S, Act, →, I = {s₀}, AP, L) and φ has configurations C = S × Sub(φ), initial configuration c₀ = (s₀, φ) (similar to tabular of Emerson Lei algorithm, but here only reachable part has to be computed! ⇒ on-the-fly algorithm)
- \forall belard wants to show $s \notin \llbracket \psi \rrbracket$, \exists loise wants to show $s \in \llbracket \psi \rrbracket$

Game Graph

The edges of the game graph are determined as follows:

- 1. If $c = (s, \psi_1 \land \psi_2)$ then \forall belard can move to (s, ψ_1) or (s, ψ_2)
- 2. If $c = (s, [a]\psi)$ then \forall belard can move to (t, ψ) for some $s \xrightarrow{a} t$
- 3. If $c = (s, \nu x. \psi)$ then the successor is (s, ψ)
- 4. If c = (s, x) then the successor is $(s, Qx.\varphi_x)$
- 5. If $c = (s, \psi_1 \lor \psi_2)$ then \exists loise can move to (s, ψ_1) or (s, ψ_2)
- 6. If $c = (s, \langle a \rangle \psi)$ then \exists loise can move to (t, ψ) for some $s \xrightarrow{a} t$
- 7. If $c = (s, \mu x. \psi)$ then the successor is (s, ψ)
- 8. If c = (s, p) or $c = (s, \neg p)$ then the play is finished

Configurations in cases 1-4 belong to \forall belard, cases 5-8 belong to \exists loise (in cases 3,4,7,8 this is not important, as there is no choice)



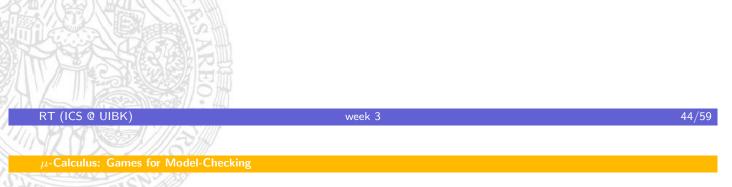
Playing a Game

Given a play $c_0 \hookrightarrow c_1 \hookrightarrow \ldots$ there are two possibilities:

- If play is finite, $c_n = (s, \psi)$ is last configuration then \forall belard wins iff
 - $\psi = \langle a \rangle \chi$ (since there is no successor by maximality of play)
 - $\psi = p$ and $p \notin L(s)$ or $\psi = \neg p$ and $p \in L(s)$

In all other finite plays \exists loise wins

 ∀belard/∃loise wins an infinite play iff the maximal subformula that is visited infinitely often is a μ/ν-formula



Strategies

A strategy Str of a player is a function which takes an initial part of a play which ends in a configuration which belongs to that player and returns the configuration where the player wants to move to. Formally:

```
\mathcal{S}tr: C^*C_{player} \to C \cup \{\bot\} such that for all c_0 \dots c_n \in C^*C_{player}:
```

- If $Str(c_0 \ldots c_n) \in C$ then $c_n \hookrightarrow Str(c_0 \ldots c_n)$ is allowed move
- If $Str(c_0 \dots c_n) = \bot$ then c_n has no successor

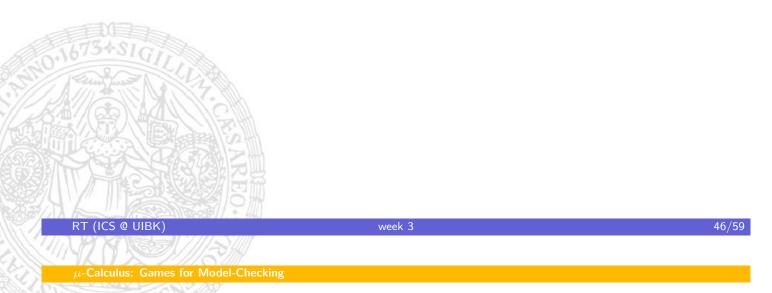
Note that a strategy of player uniquely determines all moves of that player for any given play; we then speak of a Str-play

A strategy Str of a player is a winning strategy if for each Str-play that player is the winner

A strategy Str is positional, if Str only considers the last configuration, i.e., $Str : C_{player} \rightarrow C \cup \{\bot\}$

week 3

Example Strategies



3. Model Checking by Games

Theorem (Stirling)

For each formula φ and each transition system TS:

- if $TS \models \varphi$ then \exists loise has a positional winning strategy
- if $TS \not\models \varphi$ then \forall belard has a positional winning strategy

Algorithmic approach for model checking

- Color configuration of game-graph by green/red if ∃loise/∀belard has winning strategy when starting from that configuration
- $TS \models \varphi$ iff color of c_0 is green

4. Bottom-Up Coloring

We only consider alternation free formulas

Remember: Then graph for formula (and also game-graph) can be partitioned into components C_1, \ldots, C_n such that

- all components have only μ -formulas or only ν -formulas
- all edges of C_i lead to $C_i \cup \cdots \cup C_n$

Thus, every play starting in C_i will either

- 1. leave C_i and continue in some C_{i+k} , k > 0
- 2. reach a terminal configuration in C_i
 - (terminal configuration = configuration without successors)
- 3. stay in C_i forever

In case 1, the winner can be determined by the color of the configuration that is visited first in C_{i+k}

In case 2, the terminal configuration specifies the winner

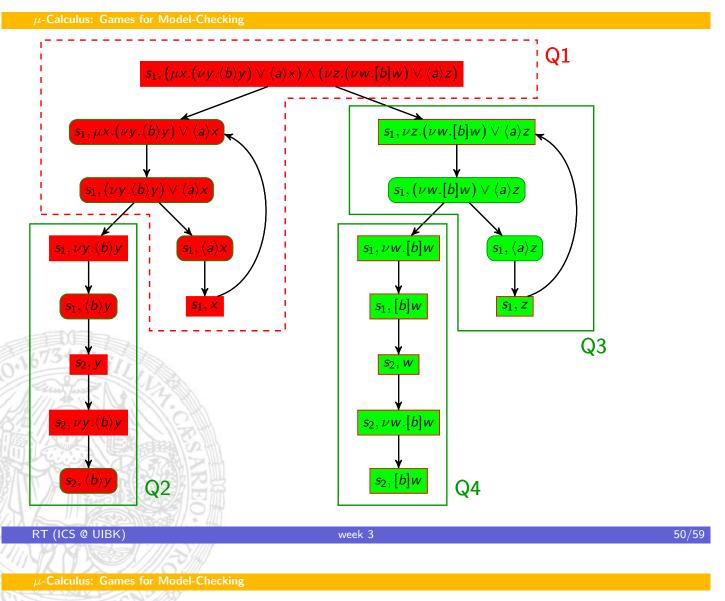
In case 3, \forall belard/ \exists loise wins iff C_i is μ/ν -component

RT (ICS @ UIBK) week 3 48/59

4. Bottom-Up Coloring

Hence, perform the following coloring process:

- every terminal configuration c is colored
 by red if the play c is won by ∀belard and by green, otherwise
- colors are propagated bottom-up:
 let c be configuration with successors c₁,..., c_m with m > 0
 - $c \in C_{\exists \text{loise}}$, some c_i green \rightsquigarrow color c green
 - $c \in C_{\exists \text{loise}}$, all $c_i \text{ red } \rightsquigarrow \text{ color } c \text{ red}$
 - $c \in C_{\forall belard}$, some c_i red \rightsquigarrow color c red
 - $c \in C_{\forall belard}$, all c_i green \rightsquigarrow color c green
- If all colors of C_{i+1}, \ldots, C_n are determined and no propagation is possible for configurations of C_i then
 - color all white nodes of C_i by red if C_i is μ -component
 - color all white nodes of C_i by green if C_i is ν -component



4. Bottom-Up Coloring

Lemma

Once a configuration has a color, it will never be changed.

Theorem (Bollig, Leucker, Weber)

The bottom-up coloring process terminates and c_0 has color green/red iff \exists loise/ \forall belard has a positional winning strategy.

Further properties of the bottom-up coloring algorithm:

- Linear complexity (optimal)
- Every configuration is considered (half on-the-fly)

5. Top-Down Coloring

Overview:

- Directly start with top component C_1
- Let C_1 be μ -component (ν -components are treated dually)
 - If play ends in C_1 then winner can be determined
 - If play stays in C_1 then \exists loise looses
 - \Rightarrow Goal of \exists loise is to leave C_1 (or reach green terminal configuration)
 - Idea: Make successors of C_1 outside C_1 attractive
 - \Rightarrow color these nodes with light-green (optimistic assumption)
 - Then propagate colors in C_1
- Result after coloring configurations in C_1
 - configurations with full-color have correct color (as in bottom-up)
 - configurations with white color become red (as in bottom-up)

week 3

- if initial configuration has full-color then done
- otherwise initial configuration has light-green color: then remove all light-green colors from C₁, pick some successor component C_k of C₁ with assumed light-green initial configuration and determine the (full) color of C_k's initial configurations; afterwards color C₁ again, ...

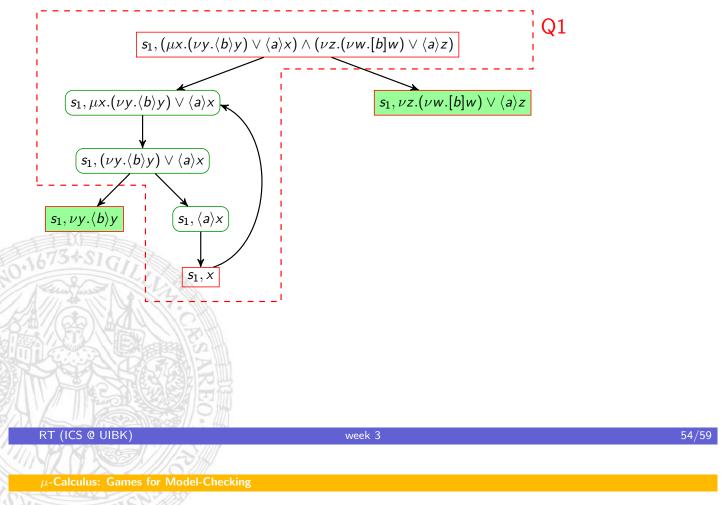
RT (ICS @ UIBK)

 μ -Calculus: Games for Model-Checking

5. Top-Down Coloring

Details on coloring process:

- every terminal configuration obtains full color (as in bottom-up)
- colors are propagated similar to bottom-up: let c be configuration with successors c_1, \ldots, c_m with m > 0
 - $c \in C_{\exists \text{loise}}$, some c_i green \rightsquigarrow color c green
 - $c \in C_{\exists \text{loise}}$, some c_i light-green, no c_j green \rightsquigarrow color c light-green
 - $c \in C_{\exists \text{loise}}$, all $c_i \text{ red } \rightsquigarrow \text{ color } c \text{ red}$
 - $c \in C_{\exists \text{loise}}$, all c_i red or light-red, some c_j light-red \rightsquigarrow color c light-red
 - $c \in C_{\forall belard}$, some c_i red \rightsquigarrow color c red
 - $c \in C_{\forall belard}$, some c_i light-red, no c_j red \rightsquigarrow color c light-red
 - $c \in C_{\forall belard}$, all c_i green \rightsquigarrow color c green
 - $c \in C_{\forall belard}$, all c_i green or light-green, some c_j light-green \rightsquigarrow color c light-green



5. Top-Down Coloring

Lemma

When coloring a component C_i a configuration can only change from white to colored, and from each light-color to the corresponding full-color.

Theorem (Bollig, Leucker, Weber)

The top-down coloring process terminates and c_0 has color green/red iff \exists loise/ \forall belard has a positional winning strategy.

Further properties of the top-down coloring:

- Full on-the-fly algorithm (optimal)
- Quadratic complexity (sub-optimal)

6. Parallelization

Let us consider *n* machines (PCs in a cluster, etc.):

- Game graph distribution:
 - Size of game graph unknown when starting algorithm
 - Assume hash function f
 - Machine *i* stores configuration *c* iff *f*(*c*) mod *n* = *i* (additionally successors and predecessors of *c* are stored on machine *i*)
- Game graph construction:
 - Use breadth-first search (easy to parallelize with above distribution)
- Coloring (both bottom-up and top-down):
 - Process components sequentially, but color each component in parallel
 - as soon as terminal state is detected during game graph construction start backwards coloring process (in parallel)
 - if coloring of component is done, recolor white and light-color configurations (in parallel)

week 3

RT (ICS @ UIBK)

 μ -Calculus: Games for Model-Checking

6. Parallelization

Some notes on parallelization:

- Cycle detection is inherently sequential (but required for model checking via NBAs)
- Coloring algorithm does not need cycle detection, but parallel termination detection
- ⇒ Algorithms for parallel termination detection available
 - (e.g. DFG token termination algorithm of Dijkstra, Feijen, Gasteren)

Summary

- μ -calculus is expressive logic (subsumes CTL*, NBAs)
- μ -calculus is based on least- and greatest fixpoint operators
- direct model-checking algorithm based on set-operations, complexity is exponential in alternation depth
- model-checking via games (winning strategy of ∃loise or ∀belard)
- bottom-up and top-down (parallel) on-the-fly coloring algorithms for alternation free formulas

