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Overview

Model-Checking for Different Logics
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Overview

µ-calculus

• Very expressive

⇒ many logics can be translated into µ-calculus

• Efficient (parallel) model-checking algorithms

• Based upon fixpoints

• Not very human-readable

⇒ use µ-calculus mainly for model-checking of other logics
and not for direct specification
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Monotone Functions and Fixpoints

Fixpoints

Let τ : D → D be a function over some domain D

• d ∈ D is fixpoint of τ iff τ(d) = d

• Not every function has a fixpoint

• Some functions have more than one fixpoint

Let D be equipped with a partial order 6

• d is least fixpoint of τ (lfp(τ)) iff
τ(d) = d and d 6 e for all other fixpoints e of τ

• d is greatest fixpoint of τ (gfp(τ)) iff
τ(d) = d and e 6 d for all other fixpoints e of τ
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Monotone Functions and Fixpoints

Monotone Functions

Let D be a domain with partial order 6.

• A function τ : D → D is monotone iff d 6 e ⇒ τ(d) 6 τ(e)

Examples:

• x2 is monotone over the naturals, but not over the integers

• For D = 2S , 6 = ⊆, and arbitrary Y ∈ D, i.e., Y ⊆ S :
• τ1(X ) = X ∩ Y is monotone
• τ2(X ) = X ∪ Y is monotone
• τ3(X ) = D \ X is not monotone

• Remark:
• τ1, τ2 have both least and greatest fixpoints
• τ3 does not have a single fixpoint if S 6= ∅
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Monotone Functions and Fixpoints

Existence and Computation of Fixpoints

Theorem (Knaster, Tarski)

Let S be a finite set, let D = 2S be ordered by ⊆, let τ : D → D.
If τ is monotone then

• lfp(τ) = τ |S|(∅)

• gfp(τ) = τ |S |(S)
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Monotone Functions and Fixpoints

Proof
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Monotone Functions and Fixpoints

Summary of Fixpoints

• X is fixpoint of τ iff τ(X ) = X

• Function τ : 2S → 2S is monotone iff X ⊆ Y implies τ(X ) ⊆ τ(Y )
(union and intersection are monotone, complement is not monotone)

• If S is finite and τ monotone then τ has least and greatest fixpoint:
• lfp(τ) = τ |S|(∅)
• gfp(τ) = τ |S|(S)
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µ-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm

A Small Change in Transition Systems

Transition systems may now have labeled edges:
A transition system TS is a tuple

(S ,Act,→, I ,AP, L)

where

• S is a set of states

• Act is a set of actions

• → ⊆ S × Act× S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function
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µ-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm

Example
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µ-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm

µ-Calculus

Let TS = (S ,Act,→, I ,AP, L) be a transition system.
Let V = {x , y , . . . } be a set of variables (ranging over sets of states)

Definition (µ-Calculus Syntax)

A formula of the µ-calculus (Lµ-formula) has one of the following forms:

• p where p ∈ AP

• ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ
• 〈a〉ϕ where a ∈ Act there is an a-successor satisfying ϕ

• [a]ϕ where a ∈ Act all a-successors satisfy ϕ

• x where x ∈ V
• µx .ϕ where x ∈ V least fixpoint

• νx .ϕ where x ∈ V greatest fixpoint

In last two cases, x may only occur in ϕ under an even number of negations

Binding priority: {¬, 〈·〉, [·]} A {∧,∨} A {µ, ν}
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µ-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm

µ-Calculus
Let TS = (S ,Act,→, I ,AP, L) be a transition system.
Let V = {x , y , . . . } be a set of variables (ranging over sets of states).
Let α : V → 2S be a variable assignment

Definition (µ-Calculus Semantic)

For each Lµ-formula and variable assignment define the satisfiability set as

• [[ p ]]α = {s | p ∈ L(s)}
• [[ϕ ∧ ψ ]]α = [[ϕ ]]α ∩ [[ψ ]]α

• [[ϕ ∨ ψ ]]α = [[ϕ ]]α ∪ [[ψ ]]α

• [[¬ψ ]]α = S \ [[ϕ ]]α

• [[ 〈a〉ϕ ]]α = {s | there is s a−→ t and t ∈ [[ϕ ]]α}
• [[ [a]ϕ ]]α = {s | whenever s a−→ t then t ∈ [[ϕ ]]α}
• [[ x ]]α = α(x)

• [[µx .ϕ ]]α = lfp(τ) where τ : 2S → 2S , τ(X ) = [[ϕ ]]α[x :=X ]

• [[ νx .ϕ ]]α = gfp(τ) where τ : 2S → 2S , τ(X ) = [[ϕ ]]α[x :=X ]
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µ-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm

A Note on Well-Definedness

• Example:
For µx .¬x obtain τ(X ) = S \ X ⇒ no lfp ⇒ no [[µx .¬x ]]α

However, µx .¬x is not a Lµ-formula
(x occurs under an odd number of negations)

• Semantic is well-defined iff both
• lfp(τ) and
• gfp(τ)

exist where τ is defined as τ(X ) = [[ϕ ]]α[x :=X ]

• Requirement of even number of negations ensures that τ is monotone!

⇒ Knaster & Tarski ensures that both lfp(τ) and gfp(τ) exist

⇒ Semantic is well-defined
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µ-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm

Model-Checking for the µ-Calculus

• A Lµ-formula is closed iff it does not contain free variables

⇒ For closed formulas α is not required

⇒ Define model relation for closed formulas:

TS |= ϕ iff I ⊆ [[ϕ ]]

Naive Model-Checking Algorithm:

• Just compute [[ϕ ]] by directly applying the definition of the semantics
in a top-down way

• To compute fixpoints use Knaster & Tarski
• lfp(τ) = τ |S|(∅)
• gfp(τ) = τ |S|(S)

• Model-Checking for µ-calculus boils down to simple set operations
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µ-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm

Naive MC-Algorithm for the µ-Calculus

Input: A closed Lµ-formula ϕ and
a transition system TS = (S ,Act,→, I ,AP, L)

Output: The boolean value of TS |= ϕ
Global variable: α : V(ϕ)→ 2S

function model check(ϕ)

return I ⊆ sem(ϕ)

procedure reset(x)

if x is µ-variable then α(x) := ∅ else α(x) := S
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µ-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm

Naive MC-Algorithm for the µ-Calculus
function sem(ϕ)

case ϕ of

x : return α(x)

p : return {s | p ∈ L(s)}
¬ψ : return S \ sem(ψ)

ψ1 ∧ ψ2 : return sem(ψ1) ∩ sem(ψ2)

ψ1 ∨ ψ2 : return sem(ψ1) ∪ sem(ψ2)

〈a〉ψ : return {s | ∃s a−→ t, t ∈ sem(ψ)}
[a]ψ : return {s | ∀s a−→ t : t ∈ sem(ψ)}
Qx .ψ :

reset(x)

while true do

U := α(x)

V := sem(ψ)

if U = V then return U else α(x) := V
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µ-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm

Example
Computing [[ϕ ]] for ϕ = µx .[b]νy .x ∨ 〈a〉y and the following TS.

1 2 3

p

4

p

5

qa

b

a

b

a

b

a

b

b,c

[[ϕ ]] α(x) [[ [b]νy .x ∨ 〈a〉y ]]α [[ νy .x ∨ 〈a〉y ]]α α(y) [[ x ∨ 〈a〉y ]]α [[ 〈a〉y ]]α

1 X X X X X X X
2 X X X X X X X
3 X X X X X X X
4 X X X X X X
5

Hence, [[ϕ ]] = {1, 2, 3, 4} and TS |= ϕ.
Complexity of naive algorithm:

O((|TS| · |ϕ|)|V(ϕ)|)
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µ-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm

Encoding of Logics into µ-Calculus

Theorem
Every CTL-formula can be translated into a closed Lµ-formula.

Proof.
W.l.o.g. all transitions are labeled by “a” (CTL cannot distinguish these)

• A Xϕ [a]ϕ

• E Xϕ 〈a〉ϕ
• AϕUψ  µx .ψ ∨ (ϕ ∧ [a]x)

• EϕUψ  µx .ψ ∨ (ϕ ∧ 〈a〉x)

• A Gϕ νx .ϕ ∧ [a]x

Problem: Resulting complexity is exponential, although CTL-model
checking has linear complexity.
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µ-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Example
Computing [[µx .ϕx ]] for the following TS where

ϕx = q ∨ 〈a〉µy .ϕy

ϕy = p ∧ 〈a〉(x ∨ y)

1 2 3

p

4

p

5

qa

b

a

b

a

b

a

b

b,c

[[µx.ϕx ]] α(x) [[ϕx ]] [[ q ]] [[ 〈a〉µy.ϕy ]] [[µy.ϕy ]] α(y) [[ϕy ]] [[ p ]] [[ 〈a〉(x ∨ y) ]] [[ x ∨ y ]]

1

2

3

4

5

Complexity of improved algorithm:

O((|TS| · |ϕ|)?)
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µ-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Positive Normal Form
Lµ-formula ϕ is in positive normal form (PNF) iff every variable is bound
at most once and “¬” only occurs before propositions p

Theorem
Every closed Lµ-formula can be translated into positive normal form.

Proof.

• ¬(ϕ ∧ ψ) ¬ϕ ∨ ¬ψ
• ¬(ϕ ∨ ψ) ¬ϕ ∧ ¬ψ
• ¬(¬ϕ) ϕ

• ¬〈a〉ϕ [a]¬ϕ
• ¬[a]ϕ 〈a〉¬ϕ
• ¬µx .ϕ νx .¬ϕ[x/¬x ]

• ¬νx .ϕ µx .¬ϕ[x/¬x ]

• ¬x does not occur due to “even number of negations”-condition
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µ-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Example
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µ-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Improved MC-Algorithm for the µ-Calculus [Emerson,Lei]

Input: A closed Lµ-formula ϕ in PNF and
a transition system TS = (S , I , . . . , L)

Output: The boolean value of TS |= ϕ
Global variables: α : V(ϕ)→ 2S

Valid ⊆ V(ϕ) // x ∈ Valid implies α(x) = [[ Qx .ϕx ]]α

function model check(ϕ)

Valid := ∅
for all x ∈ V(ϕ) do reset(x)

return I ⊆ sem(ϕ)

procedure reset(x)

if x is µ-variable then α(x) := ∅ else α(x) := S
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µ-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Improved MC-Algorithm for the µ-Calculus [Emerson,Lei]
function sem(ϕ)

case ϕ of

x : return α(x)

p : return {s | p ∈ L(s)}
¬p : return {s | p /∈ L(s)}
ψ1 ∧ ψ2 : return sem(ψ1) ∩ sem(ψ2)

ψ1 ∨ ψ2 : return sem(ψ1) ∪ sem(ψ2)

〈a〉ψ : return {s | ∃s a−→ t, t ∈ sem(ψ)}
[a]ψ : return {s | ∀s a−→ t : t ∈ sem(ψ)}
Qx .ψ : if x ∈ Valid then return α(x) else while true do

U := α(x); V := sem(ψ)

if U = V then

Valid := Valid ∪ {x}; return U

else

α(x) := V ; touch(Qx .ψ)
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µ-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Improved MC-Algorithm for the µ-Calculus [Emerson,Lei]

procedure touch(Q ′x .ϕx)

Valid := Valid \ {y | Qy .ϕy ∈ Sub(ϕx), x ∈ FV(ϕy )}
Reset := {y | Qy .ϕy ∈ Sub(ϕx), x ∈ FV(ϕy ),Q 6= Q ′}
while z ∈ {z | ∃y ∈ Reset,Qz .ϕz ∈ Sub(ϕy ),FV(ϕz) ∩ Reset 6= ∅} do

Reset := Reset ∪ {z}
for all y ∈ Reset do reset(y)

Valid := Valid \ Reset

• FV(ϕ) is the set of free variables of ϕ

• Sub(ϕ) is the set of sub-formulas of ϕ

• ϕx is the unique formula which is the argument of “Qx .”
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µ-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Illustration of touch
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µ-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Example

Computing [[ νz .ϕz ]] for the following TS where

ϕz = z ∧ 〈a〉µx .ϕx

ϕx = q ∨ 〈a〉µy .ϕy

ϕy = p ∧ 〈a〉(x ∨ y)

1 2 3

p

4

p

5

qa

b

a

b

a

b

a

b

b,c
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µ-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Complexity of the Algorithm

Definition (Alternation Depth)

Variable x depends on y in ϕ (x ≺ϕ y) iff
ϕ contains subformula Q x .ψ and y is a free variable of ψ.

The alternation depth of a formula ϕ in PNF is defined as ad(ϕ) = n where
n is the largest number such that x1 ≺ϕ · · · ≺ϕ xn and
the type of xi is different to the type of xi+1 for every i < n.

A formula with ad(ϕ) 6 1 is called alternation free.

Theorem
The algorithm of Emerson and Lei is sound and has complexity

O((|TS| · |ϕ|)ad(ϕ)).

Efficient implementations available using binary decision diagrams (BDDs)
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µ-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Example

ad(q ∨ 〈a〉p) =

ad(µx .q ∨ 〈a〉(µy .p ∧ 〈a〉(x ∨ y))) =

ad(νz .z ∧ 〈a〉(µx .q ∨ 〈a〉µy .p ∧ 〈a〉(x ∨ y))) =

ad(µx .[b]νy .x ∨ 〈a〉y) =

ad(νx .µy .y ∧ x ∧ (νz .z) ∧ νu.(u ∧ x)) =

ad(νx .µy .y ∧ x ∧ (νz .z) ∧ νu.(u ∧ y)) =
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µ-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Proof of Soundness

One crucial point is to use a stronger variant of Knaster-Tarski:

Theorem (Variant of Knaster-Tarski)

Let S be a finite set, let D = 2S be ordered by ⊆, let τ : D → D.
If τ is monotone then

• lfp(τ) = τ |S|(T ) if T ⊆ τk(∅) for some k

• gfp(τ) = τ |S |(T ) if T ⊇ τk(S) for some k

Then the soundness of the algorithm can be proven by induction on ϕ
using the following invariants:
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µ-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Encoding of Logics into µ-Calculus

Theorem
Every CTL-formula can be translated into an alternation free Lµ-formula.

Proof.

• . . .

• EϕUψ  µx .ψ ∨ (ϕ ∧ 〈a〉x)

• A Gϕ νx .ϕ ∧ [a]x

Resulting formula has only trivial dependencies x ≺ x .

⇒ CTL-model checking via µ-calculus has linear
and hence, optimal complexity

Theorem
Every CTL∗-formula can be translated into a Lµ-formula
with alternation depth 2.
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µ-Calculus: Games for Model-Checking

Overview

Current approach:

• Formula  Lµ-formula  PNF  Emerson Lei MC (BDDs)

• Global approach - whole transition system required and processed

Upcoming approach:

• Formula  Lµ-formula  PNF  MC based on Games

• Sequential algorithm for alternation free formulas

• Local approach - only parts of transition system required, on-the-fly

• Parallel algorithm for alternation free formulas

• (Not shown: algorithm for formulas with alternation depth 2)

Obtain efficient model-checker for µ-calculus, CTL, CTL∗, . . .
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µ-Calculus: Games for Model-Checking

Overview of Games for Model-Checking

1. PNF  graph

2. Graph × transition sytem  game graph

3. Model-checking = determining winner of game

4. Bottom-up sequential algorithm to determine winner

5. Top-down sequential algorithm to determine winner

6. Parallelization
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µ-Calculus: Games for Model-Checking

1. From closed Lµ-formula in PNF to graph

• First write down a given formula ϕ as a tree where
• Each formula has as successors its direct subformulas
• ¬p is seen as an atomic formula

• Then obtain a graph by adding edges from each x to Qx .ϕx

⇒ Nodes of the graph are Sub(ϕ) where duplicates are allowed
(e.g., node p ∧ p has two successors p, each p being a separate node)

ϕ alternation free: Partition graph into components Q1, . . . ,Qn such that

• Each Qi has only edges to Qi ∪ Qi+1 ∪ · · · ∪ Qn

• Each Qi contains only µ-formulas or only ν-formulas
(then we call Qi µ-component or ν-component)

Algorithm: Perform SCC decomposition,
then merge singleton nodes into adjoint component
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µ-Calculus: Games for Model-Checking

Example
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µ-Calculus: Games for Model-Checking

2. PNF + Transition System = Game Graph
Two player games:

• Players ∀belard and ∃loise

• Game graph is directed graph where nodes are called configurations
The set of configurations C is partitioned into C = C∀belard ] C∃loise

• A play is infinite or maximal finite sequence of configurations

c0 ↪→ c1 ↪→ c2 ↪→ . . .

If ci ∈ C∀belard then ∀belard can choose ci+1, same for ∃loise

Here:

• Game graph for TS = (S ,Act,→, I = {s0},AP, L) and ϕ has
configurations C = S × Sub(ϕ), initial configuration c0 = (s0, ϕ)
(similar to tabular of Emerson Lei algorithm, but here only reachable
part has to be computed! ⇒ on-the-fly algorithm)

• ∀belard wants to show s /∈ [[ψ ]], ∃loise wants to show s ∈ [[ψ ]]
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µ-Calculus: Games for Model-Checking

Game Graph

The edges of the game graph are determined as follows:

1. If c = (s, ψ1 ∧ ψ2) then ∀belard can move to (s, ψ1) or (s, ψ2)

2. If c = (s, [a]ψ) then ∀belard can move to (t, ψ) for some s a−→ t

3. If c = (s, νx .ψ) then the successor is (s, ψ)

4. If c = (s, x) then the successor is (s,Qx .ϕx)

5. If c = (s, ψ1 ∨ ψ2) then ∃loise can move to (s, ψ1) or (s, ψ2)

6. If c = (s, 〈a〉ψ) then ∃loise can move to (t, ψ) for some s a−→ t

7. If c = (s, µx .ψ) then the successor is (s, ψ)

8. If c = (s, p) or c = (s,¬p) then the play is finished

Configurations in cases 1-4 belong to ∀belard, cases 5-8 belong to ∃loise
(in cases 3,4,7,8 this is not important, as there is no choice)
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µ-Calculus: Games for Model-Checking

s1, (µx .(νy .〈b〉y) ∨ 〈a〉x) ∧ (νz .(νw .[b]w) ∨ 〈a〉z)

s1, µx .(νy .〈b〉y) ∨ 〈a〉x

s1, (νy .〈b〉y) ∨ 〈a〉x

s1, νy .〈b〉y

s1, 〈b〉y

s2, y

s2, νy .〈b〉y

s2, 〈b〉y

s1, 〈a〉x

s1, x

s1, νz .(νw .[b]w) ∨ 〈a〉z

s1, (νw .[b]w) ∨ 〈a〉z

s1, νw .[b]w

s1, [b]w

s2,w

s2, νw .[b]w

s2, [b]w

s1, 〈a〉z

s1, z

Q2

Q1

Q4

Q3
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µ-Calculus: Games for Model-Checking

Playing a Game

Given a play c0 ↪→ c1 ↪→ . . . there are two possibilities:

• If play is finite, cn = (s, ψ) is last configuration then ∀belard wins iff
• ψ = 〈a〉χ (since there is no successor by maximality of play)
• ψ = p and p /∈ L(s) or ψ = ¬p and p ∈ L(s)

In all other finite plays ∃loise wins

• ∀belard/∃loise wins an infinite play iff the maximal subformula that is
visited infinitely often is a µ/ν-formula
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Strategies
A strategy Str of a player is a function which takes an initial part of a play
which ends in a configuration which belongs to that player and returns the
configuration where the player wants to move to. Formally:

Str : C ∗Cplayer → C ∪ {⊥} such that for all c0 . . . cn ∈ C ∗Cplayer :

• If Str(c0 . . . cn) ∈ C then cn ↪→ Str(c0 . . . cn) is allowed move

• If Str(c0 . . . cn) = ⊥ then cn has no successor

Note that a strategy of player uniquely determines all moves of that player
for any given play; we then speak of a Str -play

A strategy Str of a player is a winning strategy if for each Str -play that
player is the winner

A strategy Str is positional, if Str only considers the last configuration,
i.e., Str : Cplayer → C ∪ {⊥}
RT (ICS @ UIBK) week 3 45/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


µ-Calculus: Games for Model-Checking

Example Strategies
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3. Model Checking by Games

Theorem (Stirling)

For each formula ϕ and each transition system TS:

• if TS |= ϕ then ∃loise has a positional winning strategy

• if TS 6|= ϕ then ∀belard has a positional winning strategy

Algorithmic approach for model checking

• Color configuration of game-graph by green/red if ∃loise/∀belard has
winning strategy when starting from that configuration

• TS |= ϕ iff color of c0 is green
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4. Bottom-Up Coloring

We only consider alternation free formulas
Remember: Then graph for formula (and also game-graph) can be
partitioned into components C1, . . . ,Cn such that

• all components have only µ-formulas or only ν-formulas

• all edges of Ci lead to Ci ∪ · · · ∪ Cn

Thus, every play starting in Ci will either

1. leave Ci and continue in some Ci+k , k > 0

2. reach a terminal configuration in Ci

(terminal configuration = configuration without successors)

3. stay in Ci forever

In case 1, the winner can be determined by the color of the configuration
that is visited first in Ci+k

In case 2, the terminal configuration specifies the winner
In case 3, ∀belard/∃loise wins iff Ci is µ/ν-component
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4. Bottom-Up Coloring

Hence, perform the following coloring process:

• every terminal configuration c is colored
by red if the play c is won by ∀belard and by green, otherwise

• colors are propagated bottom-up:
let c be configuration with successors c1, . . . , cm with m > 0
• c ∈ C∃loise, some ci green  color c green
• c ∈ C∃loise, all ci red  color c red
• c ∈ C∀belard, some ci red  color c red
• c ∈ C∀belard, all ci green  color c green

• If all colors of Ci+1, . . . ,Cn are determined and no propagation is
possible for configurations of Ci then
• color all white nodes of Ci by red if Ci is µ-component
• color all white nodes of Ci by green if Ci is ν-component
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s1, (µx .(νy .〈b〉y) ∨ 〈a〉x) ∧ (νz .(νw .[b]w) ∨ 〈a〉z)

s1, µx .(νy .〈b〉y) ∨ 〈a〉x

s1, (νy .〈b〉y) ∨ 〈a〉x

s1, νy .〈b〉y

s1, 〈b〉y

s2, y

s2, νy .〈b〉y

s2, 〈b〉y

s1, 〈a〉x

s1, x

s1, νz .(νw .[b]w) ∨ 〈a〉z

s1, (νw .[b]w) ∨ 〈a〉z

s1, νw .[b]w

s1, [b]w

s2,w

s2, νw .[b]w

s2, [b]w

s1, 〈a〉z

s1, z

Q2

Q1

Q4

Q3

s1, (µx .(νy .〈b〉y) ∨ 〈a〉x) ∧ (νz .(νw .[b]w) ∨ 〈a〉z)

s1, µx .(νy .〈b〉y) ∨ 〈a〉x

s1, (νy .〈b〉y) ∨ 〈a〉x

s1, νy .〈b〉y

s1, 〈b〉y

s2, y

s2, νy .〈b〉y

s2, 〈b〉y

s1, 〈a〉x

s1, x

s1, νz .(νw .[b]w) ∨ 〈a〉z

s1, (νw .[b]w) ∨ 〈a〉z

s1, νw .[b]w

s1, [b]w

s2,w

s2, νw .[b]w

s2, [b]w

s1, 〈a〉z

s1, z

Q2

Q1

Q4

Q3

s1, (µx .(νy .〈b〉y) ∨ 〈a〉x) ∧ (νz .(νw .[b]w) ∨ 〈a〉z)

s1, µx .(νy .〈b〉y) ∨ 〈a〉x

s1, (νy .〈b〉y) ∨ 〈a〉x

s1, νy .〈b〉y

s1, 〈b〉y

s2, y

s2, νy .〈b〉y

s2, 〈b〉y

s1, 〈a〉x

s1, x

s1, νz .(νw .[b]w) ∨ 〈a〉z

s1, (νw .[b]w) ∨ 〈a〉z

s1, νw .[b]w

s1, [b]w

s2,w

s2, νw .[b]w

s2, [b]w

s1, 〈a〉z

s1, z

Q2

Q1

Q4

Q3
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4. Bottom-Up Coloring

Lemma
Once a configuration has a color, it will never be changed.

Theorem (Bollig, Leucker, Weber)

The bottom-up coloring process terminates and c0 has color green/red iff
∃loise/∀belard has a positional winning strategy.

Further properties of the bottom-up coloring algorithm:

• Linear complexity (optimal)

• Every configuration is considered (half on-the-fly)
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5. Top-Down Coloring
Overview:

• Directly start with top component C1

• Let C1 be µ-component (ν-components are treated dually)
• If play ends in C1 then winner can be determined
• If play stays in C1 then ∃loise looses
⇒ Goal of ∃loise is to leave C1 (or reach green terminal configuration)
• Idea: Make successors of C1 outside C1 attractive
⇒ color these nodes with light-green (optimistic assumption)
• Then propagate colors in C1

• Result after coloring configurations in C1

• configurations with full-color have correct color (as in bottom-up)
• configurations with white color become red (as in bottom-up)
• if initial configuration has full-color then done
• otherwise initial configuration has light-green color:

then remove all light-green colors from C1, pick some successor
component Ck of C1 with assumed light-green initial configuration and
determine the (full) color of Ck ’s initial configurations;
afterwards color C1 again, . . .
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5. Top-Down Coloring

Details on coloring process:

• every terminal configuration obtains full color (as in bottom-up)

• colors are propagated similar to bottom-up:
let c be configuration with successors c1, . . . , cm with m > 0
• c ∈ C∃loise, some ci green  color c green
• c ∈ C∃loise, some ci light-green, no cj green  color c light-green
• c ∈ C∃loise, all ci red  color c red
• c ∈ C∃loise, all ci red or light-red, some cj light-red  color c light-red
• c ∈ C∀belard, some ci red  color c red
• c ∈ C∀belard, some ci light-red, no cj red  color c light-red
• c ∈ C∀belard, all ci green  color c green
• c ∈ C∀belard, all ci green or light-green, some cj light-green  color c

light-green
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s1, (µx .(νy .〈b〉y) ∨ 〈a〉x) ∧ (νz .(νw .[b]w) ∨ 〈a〉z)

s1, µx .(νy .〈b〉y) ∨ 〈a〉x

s1, (νy .〈b〉y) ∨ 〈a〉x

s1, νy .〈b〉y s1, 〈a〉x

s1, x

s1, νz .(νw .[b]w) ∨ 〈a〉z

Q1
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5. Top-Down Coloring

Lemma
When coloring a component Ci a configuration can only change from white
to colored, and from each light-color to the corresponding full-color.

Theorem (Bollig, Leucker, Weber)

The top-down coloring process terminates and c0 has color green/red iff
∃loise/∀belard has a positional winning strategy.

Further properties of the top-down coloring:

• Full on-the-fly algorithm (optimal)

• Quadratic complexity (sub-optimal)
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6. Parallelization

Let us consider n machines (PCs in a cluster, etc.):

• Game graph distribution:

• Size of game graph unknown when starting algorithm
• Assume hash function f
• Machine i stores configuration c iff f (c) mod n = i

(additionally successors and predecessors of c are stored on machine i)

• Game graph construction:

• Use breadth-first search (easy to parallelize with above distribution)

• Coloring (both bottom-up and top-down):

• Process components sequentially, but color each component in parallel
• as soon as terminal state is detected during game graph construction

start backwards coloring process (in parallel)
• if coloring of component is done, recolor white and light-color

configurations (in parallel)
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6. Parallelization

Some notes on parallelization:

• Cycle detection is inherently sequential
(but required for model checking via NBAs)

• Coloring algorithm does not need cycle detection,
but parallel termination detection

⇒ Algorithms for parallel termination detection available
(e.g. DFG token termination algorithm of Dijkstra, Feijen, Gasteren)

RT (ICS @ UIBK) week 3 57/59

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Summary

Summary

• µ-calculus is expressive logic (subsumes CTL∗, NBAs)

• µ-calculus is based on least- and greatest fixpoint operators

• direct model-checking algorithm based on set-operations,
complexity is exponential in alternation depth

• model-checking via games (winning strategy of ∃loise or ∀belard)

• bottom-up and top-down (parallel) on-the-fly coloring algorithms for
alternation free formulas
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