mputational )
gilf): Outline

@ Overview
Model Checking @ Monotone Functions and Fixpoints

@ ;-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm
René Thiemann

o u-Calculus: Alternation Depth and Improved Model-Checking Algorithm

Institute of Computer Science

University of Innsbruck @ s-Calculus: Games for Model-Checking

S5 2008 @ Summary

RT (ICS @ UIBK) week 3 ) RT (ICS @ UIBK) week 3 2/59

Model-Checking for Different Logics p-calculus

LTL model-

checker (NBAs) e Very expressive

=- many logics can be translated into p-calculus

CTL model-

checker (BDDs) e Efficient (parallel) model-checking algorithms

Yal model- Based upon fixpoints

checker (YATs)

Yal formula

e Not very human-readable

p-calculus
formula

p-calculus

= use p-calculus mainly for model-checking of other logics
model-checker

and not for direct specification

i

RT (ICS @ UIBK) week 3 4/59 RT (ICS @ UIBK) week 3 5/50


http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss08/mc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Monotone Functions

Fixpoints
_ _ L . <
Let 7: D — D be a function over some domain D Let D be a domain with partial order
C o . [ : [ [ < <
e d € D is fixpoint of 7 iff 7(d) = d e A function 7 : D — D is monotone iff d < e = 7(d) < 7(e)
e Not every function has a fixpoint Examples:
. . e x? is monotone over the naturals, but not over the integers
e Some functions have more than one fixpoint s _ _
Let D b i oed with 21 order < e For D=2, < =C, and arbitrary Y € D, ie., Y C S:
et e equipped with a partial order < e 7(X) = X N Y is monotone

e 7(X) = XUY is monotone

e d is least fixpoint of 7 (/fp(7)) iff
e 73(X) = D\ X is not monotone

7(d) = d and d < e for all other fixpoints e of T

e d is greatest fixpoint of 7 (gfp(7)) iff
7(d) = d and e < d for all other fixpoints e of T

e Remark:
e 71,7, have both least and greatest fixpoints
e 73 does not have a single fixpoint if S # &

RT (ICS @ UIBK) week 3 7/59 RT (ICS @ UIBK) week 3

Existence and Computation of Fixpoints Proof

Theorem (Knaster, Tarski)
Let S be a finite set, let D = 2° be ordered by C, let 7: D — D.
If T is monotone then

o Ifp(1) = 751(2)

o gfp(r) = 71°(5)

RT (ICS @ UIBK) week 3 9/59 RT (ICS @ UIBK) week 3

8/59

10/59


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary of Fixpoints

e X is fixpoint of 7 iff 7(X) = X

e Function 7: 2% — 2% is monotone iff X C Y implies 7(X) C 7(Y)

(union and intersection are monotone, complement is not monotone)

e If S is finite and 7 monotone then 7 has least and greatest fixpoint:

o Ifp(r) =7\(2)
* gfp(r) = 7°I($)

RT (ICS @ UIBK)

Example

RT (ICS @ UIBK)

week 3

week 3

11/59

14/59

A Small Change in Transition Systems

Transition systems may now have labeled edges:
A transition system TS is a tuple

(S, Act,—, 1, AP, L)

where
e S is a set of states

Act is a set of actions

e — C S x Act x S is a transition relation

| C S is a set of initial states

AP is a set of atomic propositions

sk NSERDAR i labeling function

RT (ICS @ UIBK) [E 13/59

p-Calculus
Let TS = (S, Act,—, I, AP, L) be a transition system.

Let V = {x,y,...} be a set of variables (ranging over sets of states)
Definition (u-Calculus Syntax)
A formula of the p-calculus (L,-formula) has one of the following forms:
e p where p € AP
* oNY, PV Y, mp
(a)p where a € Act there is an a-successor satisfying ¢

[a]p where a € Act all a-successors satisfy ¢
e x where x € V
o x.o where x € V least fixpoint
e vx.p where x € V greatest fixpoint
In last two cases, x may only occur in ¢ under an even number of negations

Binding priority: {—, (), [[]} 2 {A,V} 2 {w, v}

RT (ICS @ UIBK) week 3 15/59


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

p-Calculus

Let TS = (S, Act,—, I, AP, L) be a transition system.

Let V ={x,y,...} be a set of variables (ranging over sets of states).
Let a : V — 2° be a variable assignment

Definition (u-Calculus Semantic)

A Note on Well-Definedness

e Example:
For ux.—x obtain 7(X) =S\ X = nolfp = no [ux.—x]a

However, px.—x is not a L,-formula

For each L,-formula and variable assignment define the satisfiability set as (x occurs under an odd number of negations)

e [pla={slpeL(s)}

[end]a=Telanlv]a

[eVe]a=[rlavlv]a

[-¢]e=5\[¢la

[(a)¢]la ={s|thereiss—tand t € [p]a}

[[a]le]a = {s | whenever s = t then t € [¢]a}
[x]a = a(x)

[ix.¢]a = Ifo(T) where 7:2° — 2°, 7(X) = [ lape=x]
o [vx.p]a = gfp(r) where 7:2° — 25 7(X) = [olapx=x]

RT (ICS @ UIBK) week 3

Model-Checking for the p-Calculus

e A L,-formula is closed iff it does not contain free variables
= For closed formulas « is not required

= Define model relation for closed formulas:

TSkE=¢ ifft 1 C[el

Naive Model-Checking Algorithm:

e Just compute [¢] by directly applying the definition of the semantics

in a top-down way
e To compute fixpoints use Knaster & Tarski
o Ifp(1) = 71°1(2)
« gfo(r) = 719I(S)

e Model-Checking for j-calculus boils down to simple set operations

RT (ICS @ UIBK) week 3

e Semantic is well-defined iff both
o Ifp(T) and
e gfp(7)
exist where 7 is defined as 7(X) = [ ]ap=x]

e Requirement of even number of negations ensures that 7 is monotone!

= Knaster & Tarski ensures that both /fp(7) and gfp(7) exist
= Semantic is well-defined
16/59 RT (ICS @ UIBK) week 3 17/59

Naive MC-Algorithm for the p-Calculus

Input: A closed L,-formula ¢ and
a transition system TS = (S, Act,—, 1, AP, L)
Output: The boolean value of TS = ¢

Global variable: a : V(p) — 2°

function model_check(y)
return / C sem(y)

procedure reset(x)
if x is u-variable then o(x) := @ else a(x) := S

18/59 RT (ICS @ UIBK) week 3 19/59


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Naive MC-Algorithm for the p-Calculus Example
function sem(y) Computing [¢] for ¢ = ux.[blvy.x V (a)y and the following TS.
case ¢ of a

a p a p a q
- reum (| SOW O OWs
b1
p:return {s|pe L(s)} o e e o e ¢
1) return S\ sem(2)) b b b b

P1 Ao @ return sem()1) N sem(e)z)
Y1 V 1y return sem(th1) U sem (i) | Lol | () | Loy xV(a)yla | [vy-xV(a)yla | aly) | [xV

—~

a)yla | [{a)y]a

|
(a)y :return {s|Is -t t € sem())} 1| v | v v v v v v
. a . 2| v v v v v v v
[a] : .return {s|Vs—=t:tesem(y)} N p p p p P
QXY 43 VIGr ¥~ v v v v
reset(x) 5
while true do Hence, [¢] = {1,2,3,4} and TS | ¢.
U= a(x) Complexity of naive algorithm:
V = sem(%)) O((|TS] - |¢))V )
if U=V then return U else a(x) :=V
RT (ICS @ UIBK) week 3 20/59 RT (ICS @ UIBK) week 3 21/59
Encoding of Logics into u-Calculus Example
Computing [ pux.px ] for the following TS where
Theorem ox = qV(a)uy-py
Every CTL-formula can be translated into a closed L, -formula.
¢y =pA(a)(xVy)
Proof. a a p a p a q
W.l.o.g. all transitions are labeled by “a" (CTL cannot distinguish these)
OEBOWBOWBOWSO=1
o AXp~[a]p
e EXp~ (a)p b b b b

ApUt ~ puxap V(¢ Alalx)

EQUth~ pixah V (SD/\ <a>x) | [exex] | o) | Tex] | [al | [@eyey]l | Teyey]l | a) | Tey] [ Ip] | K@ Vy)] | [xVvyl]

i

Problem: Resulting complexity is exponential, although CTL-model Complexity of improved algorithm:
checking has linear complexity. ,
O((ITsl - I#1))

RT (ICS @ UIBK) week 3 22/59 RT (ICS @ UIBK) week 3 24/50

A Gy ~ vx.p A [a]x

QB WN =



http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Positive Normal Form
L,-formula ¢ is in positive normal form (PNF) iff every variable is bound

at most once and

“w_mn
—/

only occurs before propositions p

Theorem
Every closed L,,-formula can be translated into positive normal form.

Proof.

(P AY) ~ —pV )
(P V)~ oA
(=) ~ o

~{a)p ~ [a]-p

—[alp ~ (a)-p
X~ Ux.op[x/x]
WX.P ~ X p[x/x]

—x does not occur due to “even number of negations”-condition

RT (ICS @ UIBK) week 3 25/59

Improved MC-Algorithm for the p-Calculus [Emerson,Lei]

Input: A closed L,-formula ¢ in PNF and

a transition system TS=(S,/,...,L)

Output: The boolean value of TS = ¢
Global variables: « : V() — 2°

Valid C V(¢) // x € Valid implies a(x) = [ Qx.¢x ]

function model_check(y)

Valid .= @
for all x € V() do reset(x)
return /| C sem(y)

procedure reset(x)

if x is u-variable then a(x) := @ else a(x) := S

RT (ICS @ UIBK) week 3 27/59

Example

RT (ICS @ UIBK) [E 26/59

Improved MC-Algorithm for the p-Calculus [Emerson,Lei]

function sem(y)

case @ of

x : return o(x)

p:return {s| p e L(s)}

—p:return {s|p¢ L(s)}

1 Ao : return sem(1h1) N sem(vn)

P1 V o @ return sem(1)1) U sem(1)z)

(a)y - return {s|3Is 2 t,t € sem(v)}

[a]Y :return {s|Vs—2t:t € sem(y)}

Q@x.1 : if x € Valid then return o(x) else while true do
U:= a(x);V :=sem(v)

if U=V then
Valid := Valid U {x}; return U
else

a(x) := V; touch(Qx.1))

RT (ICS @ UIBK) week 3 28/59


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Improved MC-Algorithm for the p-Calculus [Emerson,Lei]

procedure touch(Q'x.py)
Valid := Valid \ {y | Qy.¢, € Sub(px),x € FV(py)}
Reset == {y | Qy-py € Sublp). x € FV(,), Q@ # Q')
while z € {z | 3y € Reset, Qz.¢, € Sub(ypy), FV(¢;) N Reset # &} do
Reset := Reset U {z}
for all y € Reset do reset(y)
Valid := Valid \ Reset

e FV(yp) is the set of free variables of
o Sub(p) is the set of sub-formulas of ¢

e , is the unique formula which is the argument of “Qx."

RT (ICS @ UIBK) week 3 29/59

Example

Computing [vz.¢, ] for the following TS where

Pz =z A (a)x.ox
Ox = qV (a)uy-py
0, =pA(a)y(xVy)

a

a p a P a q
OEBOWBOWBOWB O
b b b b

RT (ICS @ UIBK) week 3 31/59

[[lustration of touch

RT (ICS @ UIBK) [E 30/59

Complexity of the Algorithm

Definition (Alternation Depth)

Variable x depends on y in ¢ (x <, y) iff
 contains subformula Q x.1) and y is a free variable of 1.

The alternation depth of a formula ¢ in PNF is defined as ad(¢) = n where
n is the largest number such that x; <, --- <, x, and
the type of x; is different to the type of xj1 for every i < n.

A formula with ad(y) < 1 is called alternation free.

Theorem
The algorithm of Emerson and Lei is sound and has complexity

O((ITS| - [¢l)*4¢)).

Efficient implementations available using binary decision diagrams (BDDs)

RT (ICS @ UIBK) week 3 32/50


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

ad(qV (a)p) =

ad(ux.qV (a)(uy-pA(a)(xVy))) =

ad(vz.z A (a)(ux.qV (a)py.p A(a)(x Vy))) =
ad(px.[blvy.x V{(a)y) =

ad(vx.puy.y ANx N\ (vz.z) Avu.(uAx)) =
ad(vx.uy.y Nx A (vz.z) ANvu(uAy)) =

RT (ICS @ UIBK) week 3 33/59

Encoding of Logics into u-Calculus

Theorem
Every CTL-formula can be translated into an alternation free L,,-formula.
Proof.

o ...

s EoUy ~ uxp V(¢ A (a)x)

e AGy ~ vx.p A[a]x

Resulting formula has only trivial dependencies x < x. [ |

= CTL-model checking via p-calculus has linear
and hence, optimal complexity

Theorem
Every CTL*-formula can be translated into a L,-formula
with alternation depth 2.

RT (ICS @ UIBK) week 3 35/50

Proof of Soundness

One crucial point is to use a stronger variant of Knaster-Tarski:

Theorem (Variant of Knaster-Tarski)

Let S be a finite set, let D = 2° be ordered by C, letT:D — D.
If T is monotone then

o Ifp(T) = 7I5(T) if T C 7%(2) for some k
o gfp(1) = 7ISI(T) if T 2 7%(S) for some k

Then the soundness of the algorithm can be proven by induction on ¢
using the following invariants:

RT (ICS @ UIBK) week 3 34/59

Overview

Current approach:
e Formula ~» L,-formula ~» PNF ~» Emerson Lei MC (BDDs)

e Global approach - whole transition system required and processed

Upcoming approach:
e Formula ~» L,-formula ~ PNF ~~ MC based on Games

Sequential algorithm for alternation free formulas

Local approach - only parts of transition system required, on-the-fly

Parallel algorithm for alternation free formulas

(Not shown: algorithm for formulas with alternation depth 2)

Obtain efficient model-checker for u-calculus, CTL, CTL*, ...

RT (ICS @ UIBK) week 3 37/59


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview of Games for Model-Checking

1. PNF ~~ graph
2. Graph X transition sytem ~~ game graph
3. Model-checking = determining winner of game
4. Bottom-up sequential algorithm to determine winner
5. Top-down sequential algorithm to determine winner
6. Parallelization

RT (ICS @ UIBK) week 3

Example

RT (ICS @ UIBK) week 3

38/59

40/59

1. From closed L,-formula in PNF to graph

e First write down a given formula ¢ as a tree where

e Each formula has as successors its direct subformulas
e —p is seen as an atomic formula

e Then obtain a graph by adding edges from each x to Qx.px

= Nodes of the graph are Sub(y) where duplicates are allowed
(e.g., node p A p has two successors p, each p being a separate node)

 alternation free: Partition graph into components @1, ..., Q, such that
e Each Q; has only edges to Q; U Qiy1 U---U Qp

e Each Q; contains only p-formulas or only v-formulas
(then we call Q; u-component or v-component)

Algorithm: Perform SCC decomposition,
then merge singleton nodes into adjoint component

RT (ICS @ UIBK) week 3 39/59

2. PNF + Transition System = Game Graph
Two player games:
e Players Vbelard and dloise

e Game graph is directed graph where nodes are called configurations
The set of configurations C is partitioned into C = Cypelard ¥ Coioise

e A play is infinite or maximal finite sequence of configurations
g —C —C — ...

If ¢; € Cubelard then Vbelard can choose c;41, same for Jloise

Here:

e Game graph for TS = (S, Act,—, 1 = {so}, AP, L) and ¢ has
configurations C = S x Sub(yp), initial configuration ¢y = (s, ¢)
(similar to tabular of Emerson Lei algorithm, but here only reachable
part has to be computed! = on-the-fly algorithm)

e Vbelard wants to show s ¢ [ ], Jloise wants to show s € [¢]

RT (ICS @ UIBK) week 3 41/59


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Game Graph

The edges of the game graph are determined as follows:

1.

RS @ w

If ¢ = (5,11 A1) then Vbelard can move to (s,v1) or (s,12)
If ¢ = (s,[a]v) then Vbelard can move to (t,)) for some s <t
If ¢ = (s,vx.1) then the successor is (s, )

If ¢ = (s, x) then the successor is (s, @x.px)

If ¢ = (5,91 V 1) then Jloise can move to (s,1) or (s,12)

If ¢ = (s, (a)?)) then Jloise can move to (t, ) for some s -2t
If ¢ = (s, ux.1)) then the successor is (s,1))

If ¢ = (s,p) or c = (s,—p) then the play is finished

Configurations in cases 1-4 belong to Vbelard, cases 5-8 belong to dloise
(in cases 3,4,7,8 this is not important, as there is no choice)

RT (ICS @ UIBK) week 3

Playing a Game

Given a play ¢g < ¢ < ... there are two possibilities:
e If play is finite, ¢, = (s,) is last configuration then Vbelard wins iff

o = (a)x (since there is no successor by maximality of play)
e y=pand p¢ L(s)ory=-pandpelL(s)
In all other finite plays Jloise wins

42/59

e Vbelard/Jloise wins an infinite play iff the maximal subformula that is

visited infinitely often is a p/v-formula

RT (ICS @ UIBK) week 3

44/59

’51, vz.(vw.[blw) V (a)z

s1, (vw.[blw) V (a)z

w0
[
=
x
—
<
<
o~
=
<
NS
<
N
L

_________

7
] s1,vy.(b)y \

s, (a)z

[51, (a)x]

S1, <b>.y

3
£ (5] !

52, vy-(b)y

Q2

RT (ICS @ UIBK) week 3 43/59

Strategies

A strategy Str of a player is a function which takes an initial part of a play
which ends in a configuration which belongs to that player and returns the
configuration where the player wants to move to. Formally:

Str: C*Cplayer — CU{L} such that for all ¢p...cp € C*Cppayer:

o If Str(cy...cn) € C then ¢, — Str(c...cy) is allowed move

e If Str(cy...cn) = L then ¢, has no successor

Note that a strategy of player uniquely determines all moves of that player
for any given play; we then speak of a Str-play

A strategy Str of a player is a winning strategy if for each Str-play that
player is the winner

A strategy Str is positional, if Str only considers the last configuration,
ive!, StEaiGpei = QU {1}

RT (ICS @ UIBK) week 3 45/50


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Strategies

RT (ICS @ UIBK) week 3 46/59

4. Bottom-Up Coloring

We only consider alternation free formulas
Remember: Then graph for formula (and also game-graph) can be
partitioned into components (1, ..., C, such that

e all components have only p-formulas or only v-formulas
e all edges of Cjlead to C;U---U C,

Thus, every play starting in C; will either
1. leave C; and continue in some Ciik, kK >0

2. reach a terminal configuration in C;
(terminal configuration = configuration without successors)

3. stay in C; forever

In case 1, the winner can be determined by the color of the configuration
that is visited first in Ciy

In case 2, the terminal configuration specifies the winner

In case 3, Vbelard/Jloise wins iff C; is u/v-component

RT (ICS @ UIBK) week 3 48/50

3. Model Checking by Games

Theorem (Stirling)
For each formula ¢ and each transition system TS:

e if TS |= ¢ then Jloise has a positional winning strategy
e if TS [£ ¢ then Vbelard has a positional winning strategy

Algorithmic approach for model checking

e Color configuration of game-graph by green/red if Jloise/Vbelard has
winning strategy when starting from that configuration

e TS |= ¢ iff color of ¢y is green

RT (ICS @ UIBK) week 3 47/59

4. Bottom-Up Coloring

Hence, perform the following coloring process:

e every terminal configuration c is colored
by red if the play c is won by Vbelard and by green, otherwise

e colors are propagated bottom-up:
let ¢ be configuration with successors cy, ..., ¢y, with m > 0
¢ € Capise, SOMe ¢; green ~» color ¢ green
¢ € C3ise, all ¢; red ~ color ¢ red
¢ € Cybelard, SOmMe ¢; red ~~ color ¢ red
¢ € Cybelard, all ¢; green ~~ color ¢ green

e If all colors of Ciy1,...,C, are determined and no propagation is
possible for configurations of C; then

e color all white nodes of C; by red if C; is yu-component
e color all white nodes of C; by green if C; is v-component

RT (ICS @ UIBK) week 3 49/50


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

RT (ICS @ UIBK)

5. Top-Down Coloring

Overview:

e Directly start with top component (3
e Let (i be p-component (v-components are treated dually)
o If play ends in C; then winner can be determined
o If play stays in (3 then Jloise looses
= Goal of Jloise is to leave C; (or reach green terminal configuration)
e |dea: Make successors of C; outside (7 attractive
= color these nodes with light-green (optimistic assumption)
[ ]

Q2

week 3

Then propagate colors in (3

e Result after coloring configurations in (3
e configurations with full-color have correct color (as in bottom-up)
e configurations with white color become red (as in bottom-up)
e if initial configuration has full-color then done
e otherwise initial configuration has light-green color:
then remove all light-green colors from (i, pick some successor

Q4

50/50

component Cy of C; with assumed light-green initial configuration and

determine the (full) color of C's initial configurations;

afterwards color C; again, ...

RT (ICS @ UIBK)

week 3

52/50

4. Bottom-Up Coloring

Lemma

Once a configuration has a color, it will never be changed.

Theorem (Bollig, Leucker, Weber)

The bottom-up coloring process terminates and cy has color green/red iff

Jloise/Vbelard has a positional winning strategy.

Further properties of the bottom-up coloring algorithm:

e Linear complexity (optimal)

e Every configuration is considered (half on-the-fly)

RT (ICS @ UIBK)

5. Top-Down Coloring

Details on coloring process:

e every terminal configuration obtains full color (as in bottom-up)

e colors are propagated similar to bottom-up:
let ¢ be configuration with successors ¢y, . .

light-green

RT (ICS @ UIBK)

week 3

¢ € Cgjoise, SOMe ¢; green ~ color ¢ green

¢ € C3joise, SOMe ¢; light-green, no ¢; green ~ color ¢ light-green

¢ € Copise, all ¢; red ~ color ¢ red

¢ € Goioise, all ¢; red or light-red, some ¢; light-red ~» color ¢ light-red
¢ € Cypelard, Some ¢; red ~~ color ¢ red

¢ € Cybelard, S0me ¢; light-red, no ¢; red ~+ color c light-red
¢ € Cybelard, all ¢; green ~ color ¢ green

¢ € Cypelard, all ¢ green or light-green, some ¢; light-green ~ color ¢

week 3

., Cm With m >0

51/59

53/50


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

5. Top-Down Coloring

Lemma
o XKL __________ When coloring a component C; a configuration can only change from white
s vz (vw[blw) v (2)z ] to colored, and from each light-color to the corresponding full-color.

Theorem (Bollig, Leucker, Weber)

! The top-down coloring process terminates and ¢y has color green/red iff

Jloise/Nbelard has a positional winning strategy.

Further properties of the top-down coloring:

' e Full on-the-fly algorithm (optimal)

e Quadratic complexity (sub-optimal)

RT (ICS @ UIBK) week 3 54/50 RT (ICS @ UIBK) week 3 55/50

6. Parallelization 6. Parallelization

Let us consider n machines (PCs in a cluster, etc.):
e Game graph distribution:

e Size of game graph unknown when starting algorithm

. Some notes on parallelization:
e Assume hash function f P

e Machine i stores configuration ¢ iff f(c) mod n= e Cycle detection is inherently sequential
(additionally successors and predecessors of ¢ are stored on machine ) (but required for model checking via NBAs)
e Game graph construction: e Coloring algorithm does not need cycle detection,

e Use breadth-first search (easy to parallelize with above distribution) but parallel termination detection

= Algorithms for parallel termination detection available

8/5yigritg(both bottom-up and top-down): (e.g. DFG token termination algorithm of Dijkstra, Feijen, Gasteren)

e Process components sequentially, but color each component in parallel

e as soon as terminal state is detected during game graph construction
start backwards coloring process (in parallel)

e if coloring of component is done, recolor white and light-color
configurations (in parallel)

RT (ICS @ UIBK) week 3 56/50 RT (ICS @ UIBK) week 3 57/50


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

e yu-calculus is expressive logic (subsumes CTL*, NBAs)
e p-calculus is based on least- and greatest fixpoint operators

e direct model-checking algorithm based on set-operations,
complexity is exponential in alternation depth

e model-checking via games (winning strategy of Jloise or Vbelard)

e bottom-up and top-down (parallel) on-the-fly coloring algorithms for
alternation free formulas

RT (ICS @ UIBK) week 3 59/50


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Overview
	Monotone Functions and Fixpoints
	-Calculus: Syntax, Semantic, and Naive Model-Checking Algorithm
	-Calculus: Alternation Depth and Improved Model-Checking Algorithm
	-Calculus: Games for Model-Checking
	Summary

