

Outline

• Overview

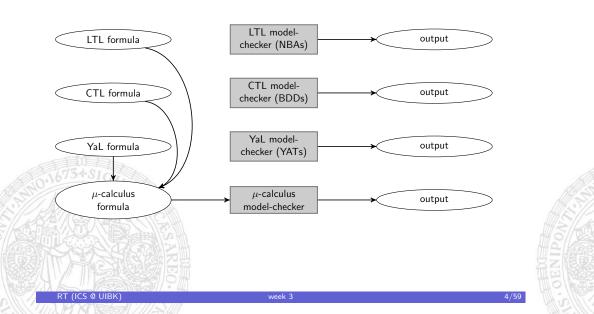
• Summary

1/59

- Monotone Functions and Fixpoints
- $\bullet~\mu\text{-Calculus:}$ Syntax, Semantic, and Naive Model-Checking Algorithm
- $\bullet~\mu\text{-Calculus:}$ Alternation Depth and Improved Model-Checking Algorithm

Model-Checking for Different Logics

RT (ICS @ UIBK)



Model Checking

René Thiemann

Institute of Computer Science University of Innsbruck

SS 2008

week 3

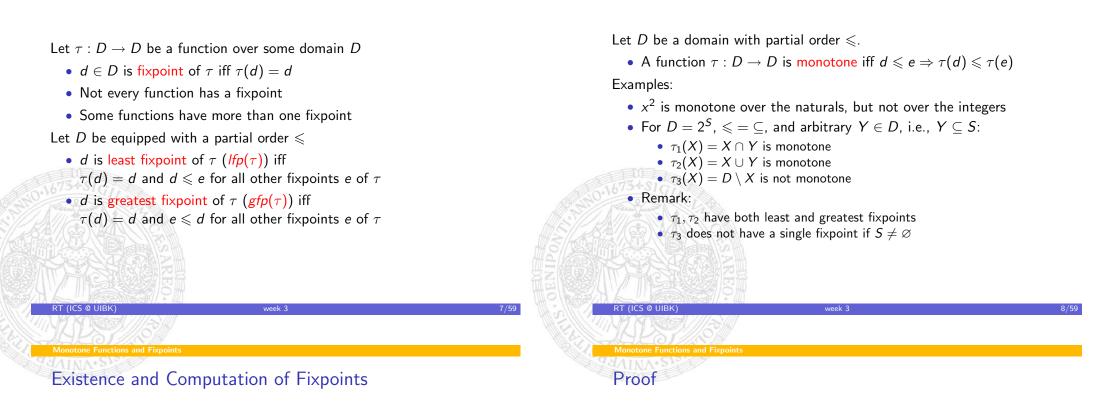
RT (ICS @ UIBK) week 3 Overview µ-calculus

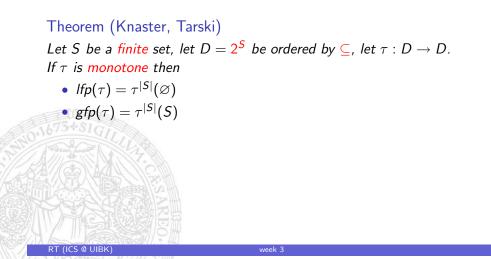
• Very expressive

RT (ICS @ UIBK)

- $\Rightarrow\,$ many logics can be translated into $\mu\text{-calculus}$
- Efficient (parallel) model-checking algorithms
- Based upon fixpoints
- Not very human-readable
- \Rightarrow use $\mu\text{-calculus}$ mainly for model-checking of other logics and not for direct specification

Fixpoints





week 3

Summary of Fixpoints

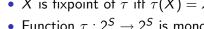
- X is fixpoint of τ iff $\tau(X) = X$
- Function $\tau: 2^S \to 2^S$ is monotone iff $X \subseteq Y$ implies $\tau(X) \subseteq \tau(Y)$ (union and intersection are monotone, complement is not monotone)
- If S is finite and τ monotone then τ has least and greatest fixpoint:

week 3

- $lfp(\tau) = \tau^{|S|}(\varnothing)$
- $gfp(\tau) = \tau^{|S|}(S)$

Example

RT (ICS @ UIBK)



A Small Change in Transition Systems

Transition systems may now have labeled edges: A *transition system TS* is a tuple

 $(S, Act, \rightarrow, I, AP, L)$

where

- S is a set of states
- Act is a set of actions
- $\rightarrow \subseteq S \times Act \times S$ is a transition relation
- $I \subset S$ is a set of initial states
- AP is a set of atomic propositions
- $L: S \rightarrow 2^{AP}$ is a labeling function

μ -Calculus

RT (ICS @ UIBK)

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system. Let $\mathcal{V} = \{x, y, ...\}$ be a set of variables (ranging over sets of states)

Definition (μ -Calculus Syntax)

A formula of the μ -calculus (L_{μ} -formula) has one of the following forms:

week 3

- p where $p \in AP$
- $\varphi \land \psi, \varphi \lor \psi, \neg \varphi$
- $\langle a \rangle \varphi$ where $a \in Act$
- there is an *a*-successor satisfying φ

all *a*-successors satisfy φ

least fixpoint

greatest fixpoint

- $[a]\varphi$ where $a \in Act$
- x where $x \in \mathcal{V}$

RT (ICS @ UIBK)

- $\mu x.\varphi$ where $x \in \mathcal{V}$
- $\nu x. \varphi$ where $x \in \mathcal{V}$

In last two cases, x may only occur in φ under an even number of negations Binding priority: $\{\neg, \langle \cdot \rangle, [\cdot]\} \supseteq \{\land, \lor\} \supseteq \{\mu, \nu\}$

week 3

week 3

11/59

μ -Calculus

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system. Let $\mathcal{V} = \{x, y, ...\}$ be a set of variables (ranging over sets of states). Let $\alpha : \mathcal{V} \rightarrow 2^S$ be a variable assignment

Definition (μ -Calculus Semantic)

For each L_{μ} -formula and variable assignment define the satisfiability set as

- $[\![p]\!]_{\alpha} = \{ s \mid p \in L(s) \}$
- $\llbracket \varphi \land \psi \rrbracket_{\alpha} = \llbracket \varphi \rrbracket_{\alpha} \cap \llbracket \psi \rrbracket_{\alpha}$
- $\bullet \ \llbracket \varphi \lor \psi \, \rrbracket_{\alpha} = \llbracket \varphi \, \rrbracket_{\alpha} \cup \llbracket \psi \, \rrbracket_{\alpha}$
- $\llbracket \neg \psi \rrbracket_{\alpha} = S \setminus \llbracket \varphi \rrbracket_{\alpha}$
- $\llbracket \langle a \rangle \varphi \rrbracket_{\alpha} = \{ s \mid \text{there is } s \xrightarrow{a} t \text{ and } t \in \llbracket \varphi \rrbracket_{\alpha} \}$
- $\llbracket [a] \varphi \rrbracket_{\alpha} = \{ s \mid \text{whenever } s \xrightarrow{a} t \text{ then } t \in \llbracket \varphi \rrbracket_{\alpha} \}$
- $\llbracket x \rrbracket_{\alpha} = \alpha(x)$
- $\llbracket \mu x. \varphi \rrbracket_{\alpha} = lfp(\tau)$ where $\tau : 2^{S} \to 2^{S}$, $\tau(X) = \llbracket \varphi \rrbracket_{\alpha[x:=X]}$
- $\llbracket \nu x. \varphi \rrbracket_{\alpha} = gfp(\tau)$ where $\tau : 2^S \to 2^S$, $\tau(X) = \llbracket \varphi \rrbracket_{\alpha[x:=X]}$

RT (ICS @ UIBK)

μ -Calculus: Syntax, Semantic, and Naive Model-Checking A

Model-Checking for the μ -Calculus

- A L_{μ} -formula is closed iff it does not contain free variables
- \Rightarrow For closed formulas α is not required
- \Rightarrow Define model relation for closed formulas:

$$TS \models \varphi$$
 iff $I \subseteq \llbracket \varphi \rrbracket$

Naive Model-Checking Algorithm:

- Just compute [[φ]] by directly applying the definition of the semantics in a top-down way
- To compute fixpoints use Knaster & Tarski
 - $lfp(\tau) = \tau^{|S|}(\varnothing)$

$$gfp(\tau) = \tau^{|S|}(S)$$

• Model-Checking for μ -calculus boils down to simple set operations

week 3

A Note on Well-Definedness

• Example:

For $\mu x. \neg x$ obtain $\tau(X) = S \setminus X \implies$ no $[\![\mu x. \neg x]\!]_{\alpha}$

However, $\mu x. \neg x$ is not a L_{μ} -formula (x occurs under an odd number of negations)

- Semantic is well-defined iff both
 - $lfp(\tau)$ and
 - gfp(au)

RT (ICS @ UIBK)

- exist where au is defined as $au(X) = \llbracket arphi
 rbracket_{lpha[x:=X]}$
- Requirement of even number of negations ensures that au is monotone!

week 3

- \Rightarrow Knaster & Tarski ensures that both lfp(au) and gfp(au) exist
- \Rightarrow Semantic is well-defined

 $\mu\text{-}\mathsf{Calculus:}$ Syntax, Semantic, and Naive Model-Checking A

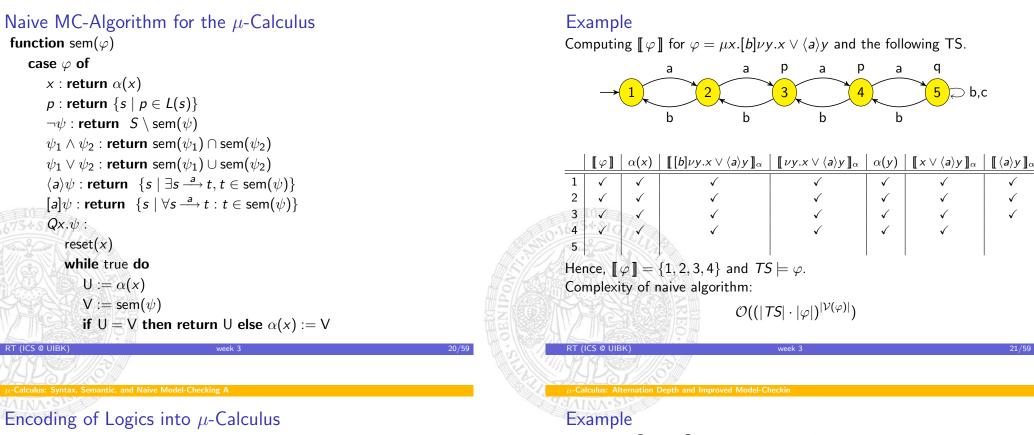
Naive MC-Algorithm for the μ -Calculus

Input:A closed L_{μ} -formula φ and
a transition system $TS = (S, Act, \rightarrow, I, AP, L)$ Output:The boolean value of $TS \models \varphi$ Global variable: $\alpha : \mathcal{V}(\varphi) \rightarrow 2^S$

function model_check(φ) **return** $I \subseteq sem(\varphi)$

RT (ICS @ UIBK)

procedure reset(x) if x is μ -variable then $\alpha(x) := \emptyset$ else $\alpha(x) := S$



22/59

Theorem

Every CTL-formula can be translated into a closed L_{μ} -formula.

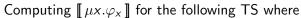
Proof.

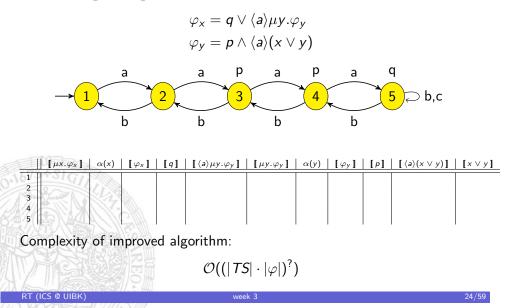
W.I.o.g. all transitions are labeled by "a" (CTL cannot distinguish these)

- $A X \varphi \rightsquigarrow [a] \varphi$
- $\mathsf{E} \mathsf{X} \varphi \rightsquigarrow \langle \mathsf{a} \rangle \varphi$
- A $\varphi \cup \psi \rightsquigarrow \mu x. \psi \lor (\varphi \land [a]x)$
- $\mathsf{E} \varphi \mathsf{U} \psi \rightsquigarrow \mu x. \psi \lor (\varphi \land \langle a \rangle x)$
- AG $\varphi \rightsquigarrow \nu x. \varphi \land [a]x$

Problem: Resulting complexity is exponential, although CTL-model checking has linear complexity.

	$\llbracket \varphi \rrbracket$	$\alpha(x)$	$\llbracket [b] \nu y . x \vee \langle a \rangle y \rrbracket_{\alpha}$	$\llbracket \nu y. x \vee \langle a \rangle y \rrbracket_{\alpha}$	$\alpha(y)$	$\llbracket x \vee \langle a \rangle y \rrbracket_{\alpha}$	$[\![\langle a \rangle y]\!]_{lpha}$
1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
3	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
4	19	11	\checkmark	\checkmark	\checkmark	\checkmark	
5	Sand A						
Hence, $\llbracket \varphi \rrbracket = \{1, 2, 3, 4\}$ and $TS \models \varphi$.							
Complexity of naive algorithm:							





Positive Normal Form

 L_{μ} -formula φ is in positive normal form (PNF) iff every variable is bound at most once and "¬" only occurs before propositions p

Theorem

Every closed L_{μ} -formula can be translated into positive normal form.

Proof.

- $\neg(\varphi \land \psi) \rightsquigarrow \neg \varphi \lor \neg \psi$
- $\neg(\varphi \lor \psi) \rightsquigarrow \neg \varphi \land \neg \psi$
- $\neg(\neg\varphi) \rightsquigarrow \varphi$
- $\neg \langle a \rangle \varphi \rightsquigarrow [a] \neg \varphi$
- $\neg [a] \varphi \rightsquigarrow \langle a \rangle \neg \varphi$
- $\neg \mu x. \varphi \rightsquigarrow \nu x. \neg \varphi[x/\neg x]$
- $\neg \nu x. \varphi \rightsquigarrow \mu x. \neg \varphi[x/\neg x]$
- $\neg x$ does not occur due to "even number of negations"-condition

week 3

μ-Calculus: Alternation Depth and Improved Model-Chec

AVINV. 25

RT (ICS @ UIBK)

Improved MC-Algorithm for the μ -Calculus [Emerson,Lei]

week 3

```
function model_check(\varphi)

Valid := \emptyset

for all x \in \mathcal{V}(\varphi) do reset(x)

return I \subseteq sem(\varphi)
```

```
procedure reset(x)
if x is \mu-variable then \alpha(x) := \emptyset else \alpha(x) := S
```

Example

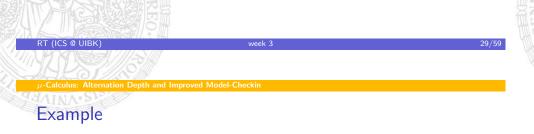
RT (ICS @ UIBK)

```
RT (ICS @ UIBK)
                                                week 3
Improved MC-Algorithm for the \mu-Calculus [Emerson,Lei]
function sem(\varphi)
     case \varphi of
         x : return \alpha(x)
         p: return {s \mid p \in L(s)}
         \neg p: return \{s \mid p \notin L(s)\}
         \psi_1 \wedge \psi_2: return sem(\psi_1) \cap sem(\psi_2)
         \psi_1 \lor \psi_2 : return sem(\psi_1) \cup sem(\psi_2)
         \langle a \rangle \psi: return \{ s \mid \exists s \xrightarrow{a} t, t \in sem(\psi) \}
         [a]\psi: \mathbf{return} \ \{s \mid \forall s \xrightarrow{a} t : t \in sem(\psi)\}
         Qx.\psi: if x \in Valid then return \alpha(x) else while true do
             U := \alpha(x); V := \operatorname{sem}(\psi)
             if U = V then
                  Valid := Valid \cup {x}; return U
             else
                 \alpha(x) := V; \operatorname{touch}(Qx.\psi)
```

Improved MC-Algorithm for the μ -Calculus [Emerson,Lei]

procedure touch($Q'x.\varphi_x$) Valid := Valid \ { $y \mid Qy.\varphi_y \in Sub(\varphi_x), x \in \mathcal{FV}(\varphi_y)$ } Reset := { $y \mid Qy.\varphi_y \in Sub(\varphi_x), x \in \mathcal{FV}(\varphi_y), Q \neq Q'$ } **while** $z \in \{z \mid \exists y \in \text{Reset}, Qz.\varphi_z \in Sub(\varphi_y), \mathcal{FV}(\varphi_z) \cap \text{Reset} \neq \emptyset$ } **do** Reset := Reset $\cup \{z\}$ **for all** $y \in \text{Reset}$ **do** reset(y) Valid := Valid \ Reset

- $\mathcal{FV}(\varphi)$ is the set of *free variables* of φ
- $\mathcal{S}\textit{ub}(arphi)$ is the set of sub-formulas of arphi
- $arphi_{\mathbf{x}}$ is the unique formula which is the argument of "Qx."



Computing $[\![\,\nu z.\varphi_z\,]\!]$ for the following TS where

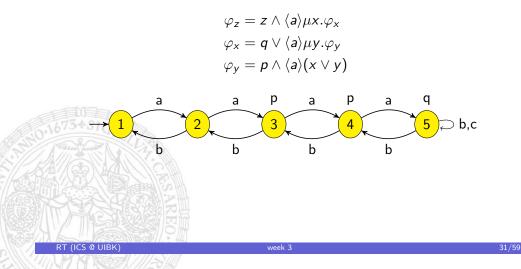
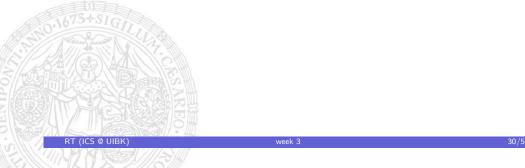


Illustration of touch



μ -Calculus: Alternation Depth and Improved Model-Checki

Complexity of the Algorithm

Definition (Alternation Depth)

Variable x depends on y in φ (x \prec_{φ} y) iff φ contains subformula $Q x.\psi$ and y is a free variable of ψ .

The alternation depth of a formula φ in PNF is defined as $ad(\varphi) = n$ where n is the largest number such that $x_1 \prec_{\varphi} \cdots \prec_{\varphi} x_n$ and the type of x_i is different to the type of x_{i+1} for every i < n.

A formula with $ad(\varphi) \leq 1$ is called alternation free.

Theorem

RT (ICS @ UIBK)

The algorithm of Emerson and Lei is sound and has complexity

 $\mathcal{O}((|\mathsf{TS}|\cdot|\varphi|)^{\mathsf{ad}(\varphi)}).$

Efficient implementations available using binary decision diagrams (BDDs)

Example

Proof of Soundness

One crucial point is to use a stronger variant of Knaster-Tarski:

Theorem (Variant of Knaster-Tarski)

Let S be a finite set, let $D = 2^S$ be ordered by \subseteq , let $\tau : D \to D$. If τ is monotone then

- $lfp(\tau) = \tau^{|S|}(T)$ if $T \subseteq \tau^k(\emptyset)$ for some k
- $gfp(\tau) = \tau^{|S|}(T)$ if $T \supseteq \tau^k(S)$ for some k

Then the soundness of the algorithm can be proven by induction on φ using the following invariants:

week 3

RT (ICS @ UIBK)

μ -Calculus: Alternation Depth and Improved Model-Checkin

Encoding of Logics into μ -Calculus

Theorem

Every CTL-formula can be translated into an alternation free L_{μ} -formula.

week 3

Proof.

- ...
- $\mathsf{E} \varphi \mathsf{U} \psi \rightsquigarrow \mu x. \psi \lor (\varphi \land \langle a \rangle x)$
- $A G \varphi \rightsquigarrow \nu x. \varphi \land [a] x$

Resulting formula has only trivial dependencies $x \prec x$.

 \Rightarrow CTL-model checking via μ -calculus has linear and hence, optimal complexity

week 3

Theorem

Every CTL*-formula can be translated into a L_{μ} -formula with alternation depth 2.

 $ad(q \lor \langle a \rangle p) =$

 $ad(\mu x.[b]\nu y.x \lor \langle a \rangle y) =$

 $ad(\mu x.q \lor \langle a \rangle (\mu y.p \land \langle a \rangle (x \lor y))) =$

 $ad(\nu z.z \land \langle a \rangle (\mu x.q \lor \langle a \rangle \mu y.p \land \langle a \rangle (x \lor y))) =$

 $ad(\nu x.\mu y.y \wedge x \wedge (\nu z.z) \wedge \nu u.(u \wedge x)) = ad(\nu x.\mu y.y \wedge x \wedge (\nu z.z) \wedge \nu u.(u \wedge y)) =$

Overview

RT (ICS @ UIBK)

33/59

35/59

Current approach:

- Formula \rightsquigarrow L_{μ} -formula \rightsquigarrow PNF \rightsquigarrow Emerson Lei MC (BDDs)
- Global approach whole transition system required and processed

Upcoming approach:

RT (ICS @ UIBK)

- Formula \rightsquigarrow L_{μ} -formula \rightsquigarrow PNF \rightsquigarrow MC based on Games
- Sequential algorithm for alternation free formulas
- Local approach only parts of transition system required, on-the-fly
- Parallel algorithm for alternation free formulas
- (Not shown: algorithm for formulas with alternation depth 2)

Obtain efficient model-checker for μ -calculus, CTL, CTL*, ...

week 3

Overview of Games for Model-Checking

- 1. PNF \rightsquigarrow graph
- 2. Graph \times transition sytem \rightsquigarrow game graph
- 3. Model-checking = determining winner of game
- 4. Bottom-up sequential algorithm to determine winner
- 5. Top-down sequential algorithm to determine winner

week 3

6. Parallelization

RT (ICS @ UIBK)

Example

- 1. From closed L_{μ} -formula in PNF to graph
 - First write down a given formula φ as a tree where
 - Each formula has as successors its direct subformulas
 - $\neg p$ is seen as an atomic formula
 - Then obtain a graph by adding edges from each x to $\mathit{Q}x.\varphi_x$
 - ⇒ Nodes of the graph are $Sub(\varphi)$ where duplicates are allowed (e.g., node $p \land p$ has two successors p, each p being a separate node)

 φ alternation free: Partition graph into components Q_1, \ldots, Q_n such that

week 3

- Each Q_i has only edges to $Q_i \cup Q_{i+1} \cup \cdots \cup Q_n$
- Each Q_i contains only μ -formulas or only ν -formulas (then we call $Q_i \mu$ -component or ν -component)

Algorithm: Perform SCC decomposition, then merge singleton nodes into adjoint component

u-Calculus: Games for Model-Checki

2. PNF + Transition System = Game Graph

Two player games:

RT (ICS @ UIBK)

- Players ∀belard and ∃loise
- Game graph is directed graph where nodes are called configurations The set of configurations C is partitioned into $C = C_{\forall belard} \uplus C_{\exists loise}$
- A play is infinite or maximal finite sequence of configurations

$$c_0 \hookrightarrow c_1 \hookrightarrow c_2 \hookrightarrow \ldots$$

If $c_i \in C_{\forall belard}$ then $\forall belard$ can choose c_{i+1} , same for $\exists loise$

Here:

RT (ICS @ UIBK)

- Game graph for TS = (S, Act, →, I = {s₀}, AP, L) and φ has configurations C = S × Sub(φ), initial configuration c₀ = (s₀, φ) (similar to tabular of Emerson Lei algorithm, but here only reachable part has to be computed! ⇒ on-the-fly algorithm)
- \forall belard wants to show $s \notin \llbracket \psi \rrbracket$, \exists loise wants to show $s \in \llbracket \psi \rrbracket$

40/59

μ -Calculus: Games for Model-Checking

Game Graph

The edges of the game graph are determined as follows:

- 1. If $c = (s, \psi_1 \land \psi_2)$ then \forall belard can move to (s, ψ_1) or (s, ψ_2)
- 2. If $c = (s, [a]\psi)$ then \forall belard can move to (t, ψ) for some $s \xrightarrow{a} t$
- 3. If $c = (s, \nu x. \psi)$ then the successor is (s, ψ)
- 4. If c = (s, x) then the successor is $(s, Qx.\varphi_x)$
- 5. If $c = (s, \psi_1 \lor \psi_2)$ then \exists loise can move to (s, ψ_1) or (s, ψ_2)
- 6. If $c = (s, \langle a \rangle \psi)$ then \exists loise can move to (t, ψ) for some $s \xrightarrow{a} t$
- 7. If $c = (s, \mu x. \psi)$ then the successor is (s, ψ)
- 8. If c = (s, p) or $c = (s, \neg p)$ then the play is finished

Configurations in cases 1-4 belong to \forall belard, cases 5-8 belong to \exists loise (in cases 3,4,7,8 this is not important, as there is no choice)

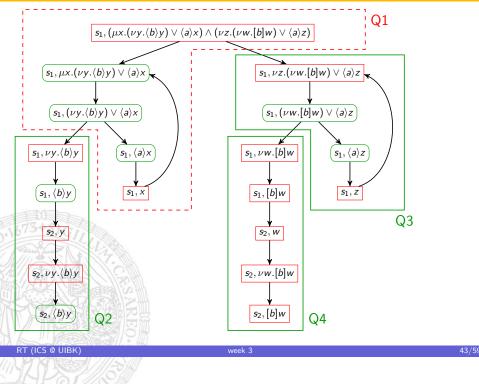
Playing a Game

Given a play $c_0 \hookrightarrow c_1 \hookrightarrow \ldots$ there are two possibilities:

- If play is finite, $c_n = (s, \psi)$ is last configuration then \forall belard wins iff
 - $\psi = \langle a \rangle \chi$ (since there is no successor by maximality of play)
 - $\psi = p$ and $p \notin L(s)$ or $\psi = \neg p$ and $p \in L(s)$

In all other finite plays ∃loise wins

• \forall belard/ \exists loise wins an infinite play iff the maximal subformula that is visited infinitely often is a μ/ν -formula



µ-Calculus: Games for Model-Checking

Strategies

RT (ICS @ UIBK)

A strategy Str of a player is a function which takes an initial part of a play which ends in a configuration which belongs to that player and returns the configuration where the player wants to move to. Formally:

 $\mathcal{S}tr: C^*C_{player} \to C \cup \{\bot\}$ such that for all $c_0 \dots c_n \in C^*C_{player}$:

- If $Str(c_0 \ldots c_n) \in C$ then $c_n \hookrightarrow Str(c_0 \ldots c_n)$ is allowed move
- If $Str(c_0 \ldots c_n) = \bot$ then c_n has no successor

Note that a strategy of player uniquely determines all moves of that player for any given play; we then speak of a Str-play

A strategy Str of a player is a winning strategy if for each Str-play that player is the winner

A strategy *Str* is positional, if *Str* only considers the last configuration, i.e., *Str* : $C_{player} \rightarrow C \cup \{\bot\}$

week 3

Example Strategies

RT (ICS @ UIBK)

μ -Calculus: Games for Model-Checking

4. Bottom-Up Coloring

We only consider alternation free formulas

Remember: Then graph for formula (and also game-graph) can be partitioned into components C_1, \ldots, C_n such that

week 3

- all components have only $\mu\text{-}\mathsf{formulas}$ or only $\nu\text{-}\mathsf{formulas}$
- all edges of C_i lead to $C_i \cup \cdots \cup C_n$

Thus, every play starting in C_i will either

- 1. leave C_i and continue in some C_{i+k} , k > 0
- 2. reach a terminal configuration in C_i
- (terminal configuration = configuration without successors)
- 3. stay in C_i forever

In case 1, the winner can be determined by the color of the configuration that is visited first in C_{i+k} In case 2, the terminal configuration specifies the winner

In case 3, \forall belard/ \exists loise wins iff C_i is μ/ν -component

3. Model Checking by Games

Theorem (Stirling)

For each formula φ and each transition system TS:

- if $TS \models \varphi$ then \exists loise has a positional winning strategy
- if $\mathsf{TS} \not\models \varphi$ then \forall belard has a positional winning strategy

Algorithmic approach for model checking

• Color configuration of game-graph by green/red if ∃loise/∀belard has winning strategy when starting from that configuration

week 3

• $TS \models \varphi$ iff color of c_0 is green

μ -Calculus: Games for Model-Checkin

RT (ICS @ UIBK)

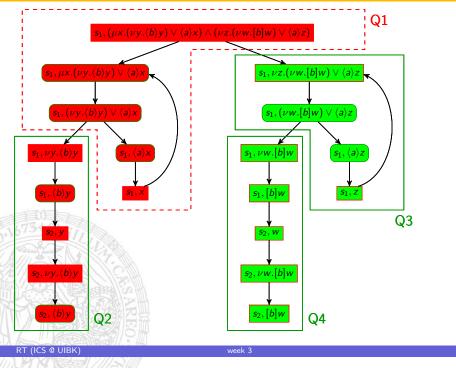
4. Bottom-Up Coloring

Hence, perform the following coloring process:

- every terminal configuration *c* is colored
 - by red if the play c is won by \forall belard and by green, otherwise
- colors are propagated bottom-up: let c be configuration with successors c₁,..., c_m with m > 0
 - $c \in C_{\exists loise}$, some c_i green \rightsquigarrow color c green
 - $c \in C_{\exists \text{loise}}$, all $c_i \text{ red } \rightsquigarrow \text{ color } c \text{ red}$
 - $c \in C_{\forall belard}$, some c_i red \rightsquigarrow color c red
 - $c \in C_{\forall belard}$, all c_i green \rightsquigarrow color c green
- If all colors of C_{i+1}, \ldots, C_n are determined and no propagation is possible for configurations of C_i then

week 3

- color all white nodes of C_i by red if C_i is μ -component
- color all white nodes of C_i by green if C_i is ν -component



μ -Calculus: Games for Model-Checking

5. Top-Down Coloring

Overview:

- Directly start with top component C_1
- Let C_1 be μ -component (ν -components are treated dually)
 - If play ends in C_1 then winner can be determined
 - If play stays in C_1 then \exists loise looses
 - $\Rightarrow\,$ Goal of ∃loise is to leave ${\it C}_1$ (or reach green terminal configuration)
 - Idea: Make successors of C_1 outside C_1 attractive
 - $\Rightarrow\,$ color these nodes with light-green (optimistic assumption)
 - Then propagate colors in C_1
- Result after coloring configurations in C_1
 - configurations with full-color have correct color (as in bottom-up)
 - configurations with white color become red (as in bottom-up)

week 3

- if initial configuration has full-color then done
- otherwise initial configuration has light-green color: then remove all light-green colors from C_1 , pick some successor component C_k of C_1 with assumed light-green initial configuration and determine the (full) color of C_k 's initial configurations; afterwards color C_1 again, ...

4. Bottom-Up Coloring

Lemma

Once a configuration has a color, it will never be changed.

Theorem (Bollig, Leucker, Weber)

The bottom-up coloring process terminates and c_0 has color green/red iff \exists loise/ \forall belard has a positional winning strategy.

Further properties of the bottom-up coloring algorithm:

- Linear complexity (optimal)
- Every configuration is considered (half on-the-fly)

μ -Calculus: Games for Model-Checking

RT (ICS @ UIBK)

50/59

5. Top-Down Coloring

Details on coloring process:

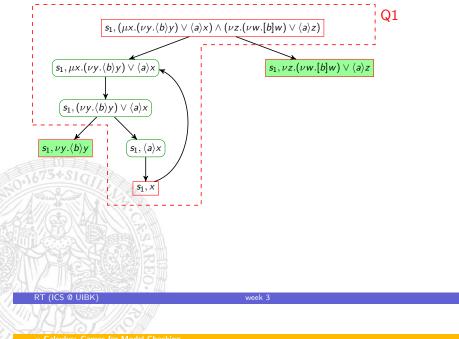
• every terminal configuration obtains full color (as in bottom-up)

week 3

- colors are propagated similar to bottom-up: let c be configuration with successors c₁,..., c_m with m > 0
 - $c \in C_{\exists \text{loise}}$, some c_i green \rightsquigarrow color c green
 - $c \in C_{\exists loise}$, some c_i light-green, no c_j green \rightsquigarrow color c light-green
 - $c \in C_{\exists \mathsf{loise}}$, all $c_i \text{ red } \rightsquigarrow \text{ color } c \text{ red}$
 - $c \in C_{\exists loise}$, all c_i red or light-red, some c_j light-red \rightsquigarrow color c light-red
 - $c \in C_{\forall belard}$, some c_i red \rightsquigarrow color c red
 - $c \in C_{\forall belard}$, some c_i light-red, no c_j red \rightsquigarrow color c light-red

week 3

- $c \in C_{\forall belard}$, all c_i green \rightsquigarrow color c green
- $c \in C_{\forall belard}$, all c_i green or light-green, some c_j light-green \rightsquigarrow color c light-green



<u><u><u>u</u>-calculus: Games for Woder-Checkr</u></u>

6. Parallelization

Let us consider *n* machines (PCs in a cluster, etc.):

- Game graph distribution:
 - Size of game graph unknown when starting algorithm
 - Assume hash function f
 - Machine *i* stores configuration *c* iff *f*(*c*) mod *n* = *i* (additionally successors and predecessors of *c* are stored on machine *i*)
- Game graph construction:
 - Use breadth-first search (easy to parallelize with above distribution)
- Coloring (both bottom-up and top-down):
 - Process components sequentially, but color each component in parallel
 - as soon as terminal state is detected during game graph construction start backwards coloring process (in parallel)
 - if coloring of component is done, recolor white and light-color configurations (in parallel)

week 3

5. Top-Down Coloring

Lemma

When coloring a component C_i a configuration can only change from white to colored, and from each light-color to the corresponding full-color.

Theorem (Bollig, Leucker, Weber)

The top-down coloring process terminates and c_0 has color green/red iff \exists loise/ \forall belard has a positional winning strategy.

week 3

Further properties of the top-down coloring:

- Full on-the-fly algorithm (optimal)
- Quadratic complexity (sub-optimal)

6. Parallelization

RT (ICS @ UIBK)

Some notes on parallelization:

- Cycle detection is inherently sequential (but required for model checking via NBAs)
- Coloring algorithm does not need cycle detection, but parallel termination detection
- ⇒ Algorithms for parallel termination detection available
- (e.g. DFG token termination algorithm of Dijkstra, Feijen, Gasteren)

week 3

RT (ICS @ UIBK)

Summary

- μ -calculus is expressive logic (subsumes CTL*, NBAs)
- $\mu\text{-calculus}$ is based on least- and greatest fixpoint operators
- direct model-checking algorithm based on set-operations, complexity is exponential in alternation depth
- model-checking via games (winning strategy of ∃loise or ∀belard)
- bottom-up and top-down (parallel) on-the-fly coloring algorithms for alternation free formulas

