

Model Checking

René Thiemann

Institute of Computer Science

University of Innsbruck

SS 2008

Outline

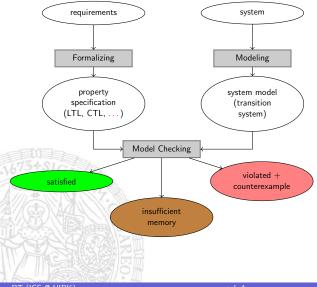
Motivation

- Abstraction
- Bisimulation
 - Bisimulation of Transition Systems
 - Bisimulation of States
 - Bisimulation and Temporal Logics
 - Quotient Systems

Simulation

Summary

Model Checking Overview



Ways to Solve the State Space Explosion Problem

- Let $TS = (S, \rightarrow, I, AP, L)$ be transition system
- Abstraction: $f:S
 ightarrow \widehat{S}$ such that $|\widehat{S}|\ll |S|$, obtain \widehat{TS}
- Then perform model checking on abstract system: $\widehat{TS} \models \varphi$?
- Questions:
 - If $\widehat{TS} \models \varphi$, what about $TS \models \varphi$?
 - If $\widehat{TS} \not\models \varphi$, what about $TS \not\models \varphi$
 - How to obtain f?
- Some answers:
 - If \widehat{TS} is a bisimulation of TS then $\widehat{TS} \models \varphi$ iff $TS \models \varphi$ (CTL*)
 - If \widehat{TS} is a simulation of TS then $\widehat{TS} \models \varphi$ implies $TS \models \varphi$ (ACTL*)
 - If TS is a simulation of \widehat{TS} then $\widehat{TS} \models \varphi$ implies $TS \models \varphi$ (ECTL*)
 - Computation of f such that \widehat{TS} is smallest bisimular system to TS

Abstraction

Let $TS = (S, \rightarrow, I, AP, L)$ and \widehat{S} be a set of (abstract) states Definition (Abstraction Function) A function $f : S \rightarrow \widehat{S}$ is an abstraction function iff

$$f(s) = f(s')$$
 implies $L(s) = L(s')$

Definition (Abstracted Transition System)

For every abstraction function f, define the over-approximation $TS^{f} = (\widehat{S}, \rightarrow^{f}, I^{f}, AP, L^{f})$ where $L^{f}(f(s)) = L(s)$, $I^{f} = \{f(s) \mid s \in I\}$, and \rightarrow^{f} is smallest relation such that

•
$$s \to s'$$
 implies $f(s) \to^f f(s')$

The under-approximation is $TS_f = (\hat{S}, \rightarrow_f, I_f, AP, L_f)$ where $L_f = L^f$, $I_f = I^f$, and \rightarrow_f is largest relation such that

• $f(s) \rightarrow_f \widehat{s}$ implies $s \rightarrow s'$ for some s' such that $f(s') = \widehat{s}$

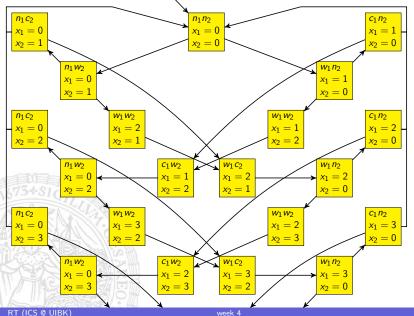
Example

Different Kinds of Abstractions

- Variable abstraction: only store subset of all variables
 e.g., state (x, y, loc) → state (x, loc)
- Data abstraction: concrete domain → abstract (smaller) domain e.g., ℕ → {even, odd} or ℕ → {pos, 0, neg}
- Predicate abstraction: state → valuation of the predicates
 e.g., state (x, y, loc) → state (x > 0, x > y, loc = crit)

Example: Bakery algorithm

Bakery Algorithm: Transition System



Bakery Algorithm: Abstraction

Abstraction Summary

• Abstraction function $f: S \to \widehat{S}$ for AP such that

$$f(s) = f(s')$$
 implies $L(s) = L(s')$

- From large (possibly infinite) system TS obtain small (possibly finite) abstract system TS^f or TS_f
- Check $TS^f \models \varphi$ or $TS_f \models \varphi$ instead of $TS \models \varphi$

• Open question: relation between $TS^f \models \varphi$, $TS_f \models \varphi$, and $TS \models \varphi$

Bisimulation Between Two Transition Systems

Let $TS_i = (S_i, \rightarrow_i, I_i, AP, L_i)$ be two transition systems.

Definition

A relation $R \subseteq S_1 \times S_2$ is a bisimulation relation iff

1. for all $s \in I_1$ exists $t \in I_2 : sRt$ and for all $t \in I_2$ exists $s \in I_1 : sRt$ and

2. for all sRt it holds:

•
$$L_1(s) = L_2(t)$$

• if $s \rightarrow_1 s'$ then $t \rightarrow_2 t'$ where $s'Rt'$

• if $t \rightarrow_2 t'$ then $s \rightarrow_1 s'$ where s'Rt'

 TS_1 and TS_2 are bisimilar ($TS_1 \sim TS_2$) iff there is a bisimulation relation R for TS_1 and TS_2

Example

Properties of Bisimulations

Lemma

 \sim is an equivalence relation (\sim is reflexive, symmetric, transitive)

Lemma (Path Bisimulation)

Let R be a bisimulation of TS_1 and TS_2 , let s_0Rt_0 . Then for each path

 $s_0 s_1 s_2 s_3 \dots$ of TS_1

there is a bisimilar path, i.e., a path

 $t_0 t_1 t_2 t_3 \dots$ of TS_2

such that for all i: s_iRt_i

Corollary (LTL-Equivalence of Bisimilar Systems) If $TS_1 \sim TS_2$ then $TS_1 \models \varphi$ iff $TS_2 \models \varphi$ for all LTL-formulas φ

Bisimulation of States

- Up to now: Bisimulation between two transition systems
- Upcoming: Bisimulation between states of same system
- \Rightarrow Minimize number of states

Definition (Bisimilar States)

Let $TS = (S, \rightarrow, I, AP, L)$ be a transition system. $R \subseteq S \times S$ is a bisimulation for TS such that for all sRt:

•
$$L(s) = L(t)$$

• if
$$s
ightarrow s'$$
 then $t
ightarrow t'$ where $s'Rt'$

• if $t \to t'$ then $s \to s'$ where s'Rt'

States s and t are bisimilar for $TS(s \sim_{TS} t)$ iff there exists bisimulation R for TS with sRt.

Properties of \sim_{TS}

Let $TS = (S, \rightarrow, I, AP, L)$ be a transition system.

Lemma

- \sim_{TS} is an equivalence relation on S
- \sim_{TS} is a bisimulation for TS
- \sim_{TS} is the largest bisimulation for TS
- $s_1 \sim_{TS} s_2$ iff $(S, \rightarrow, \{s_1\}, AP, L) \sim (S, \rightarrow, \{s_2\}, AP, L)$

Consequence: Deciding $TS_0 \sim TS_1$ via \sim_{TS} Corollary (Check of bisimilarity of transition systems) Let $TS_i = (S_i, \rightarrow_i, I_i, AP, L_i)$ with $S_0 \cap S_1 = \emptyset$. Then $TS_0 \sim TS_1$ iff for all $s_i \in I_i$ there is $s_{1-i} \in I_{1-i}$ such that $s_i \sim_{TS} s_{1-i}$ where $TS = (S_0 \cup S_1, \rightarrow_0 \cup \rightarrow_1, \emptyset, AP, L_0 \cup L_1)$

Proof of Lemma

Short Reminder: CTL*

A state-formula Φ holds in state *s* (written *s* $\models \Phi$) iff

$$\begin{array}{ll} s \models a & \text{iff} \quad a \in L(s) \\ s \models \neg \Phi & \text{iff} \quad s \not\models \Phi \\ s \models \Phi \land \Psi & \text{iff} \quad s \models \Phi \text{ and } s \models \Psi \\ s \models \mathsf{E} \varphi & \text{iff} \quad \pi \models \varphi \text{ for some path } \pi \text{ that starts in } s \end{array}$$

A path-formula φ holds for path π (written $\pi \models \varphi$) iff

 $\pi \models \mathsf{X} \varphi \qquad \text{iff } \pi[1..] \models \varphi$ $\pi \models \varphi \mathsf{U} \psi \qquad \text{iff } (\exists n \ge 0, \pi[n..] \models \psi \text{ and } (\forall 0 \le i < n, \pi[i..] \models \varphi))$ $\pi \models \varphi \land \psi \qquad \text{iff } \pi \models \varphi \text{ and } \pi \models \psi$ $\pi \models \neg \varphi \qquad \text{iff } \pi \not\models \varphi$ $\pi \models \Phi \qquad \text{iff } \pi[0] \models \Phi$ Derived operators: A, F, G, \lor, \ldots

Bisimulation and CTL*

Let
$$TS = (S, \rightarrow, I, AP, L)$$
. Define $\equiv_{CTL^*} \subseteq S \times S$ as

 $s \equiv_{CTL^*} t$ iff $(s \models \Phi \text{ iff } t \models \Phi)$ for all CTL*-state-formulas Φ

Similar definition for \equiv_{CTL}

Theorem

$$\equiv_{CTL} = \equiv_{CTL^*} = \sim_{TS}$$

⇒ Bisimilar systems satisfy the same CTL*-formulas
 ⇒ Non-bisimilar systems can be distinguished by a CTL-formula

Proof

Proof Continued

Quotient System

Since \sim_{TS} is equivalence relation, we can write $[s]_{\sim_{TS}}$ as the equivalence class to which s belongs $([s]_{\sim_{TS}} = \{t \mid s \sim_{TS} t\})$.

Definition (Quotient of a Transition System)

Let $TS = (S, \rightarrow, I, AP, L)$. The quotient system TS/\sim_{TS} (or TS/\sim for short) is defined as $(S', \rightarrow', I', AP, L')$:

•
$$S' = S/\sim_{TS} = \{[s]_{\sim_{TS}} \mid s \in S\}$$

• whenever $s \to t$ then $[s]_{\sim_{TS}} \to' [t]_{\sim_{TS}}$

•
$$I' = I/\sim_{TS} = \{ [s]_{\sim_{TS}} \mid s \in I \}$$

• $L'([s]_{\sim_{TS}}) = L(s)$

Theorem $TS \sim (TS/\sim)$

Examples

- Bakery-Algorithm: $TS^f = TS/\sim$ (However, often TS^f is not a bisimulation)
- Vending machines: $TS_2/\sim = TS_1$, $s_3 = [t_2]_{\sim_{TS_2}} = [t_3]_{\sim_{TS_2}} = \{t_2, t_3\}$

Obtaining Quotients

If one can compute \sim_{TS} then one can easily

- minimize TS to quotient system $TS/{\sim}$
- check whether $TS_0 \sim TS_1$

Problem: How to obtain \sim_{TS} ?

• Naive algorithm:

 $\sim_{TS} := \varnothing$ for all $R \subseteq S \times S$ do if R is bisimulation for TS then $\sim_{TS} := \sim_{TS} \cup R$ Naive algorithm is exponential in $|S| \Rightarrow$ not applicable

- Partition-Refinement-Algorithm, complexity: $\mathcal{O}(|S| \cdot (|AP| + | \rightarrow |))$
- (Improved PR-Algorithm, complexity: $\mathcal{O}(|S| \cdot |AP| + log|S| \cdot |\rightarrow|))$

Idea of a Partition Refinement Algorithm

- Work with partitions $\Pi = \{B_1, \dots, B_n\}$ of S $(\cup B_i = S, B_i \cap B_j = \emptyset$ for $i \neq j, B_i \neq \emptyset$)
- Partition Π contains candidates for equivalence classes
- If Π is to coarse since some B contains obviously non-equivalent states s and t then refine Π and split B into smaller parts B_1 and B_2 such that $s \in B_1$ and $t \in B_2$

 \Rightarrow Refine initial Π until no further splitting is required

Final value of Π = {C₁,..., C_k} contains real equivalence classes C_i of ~_{TS}

 \Rightarrow s \sim_{TS} t iff s, t are contained in same C_i

Partition Refinement Algorithm $\Pi := \Pi_{AP} // \text{ partitioning of } S \text{ due to labeling with } AP$ repeat $\Pi_{old} := \Pi$ for all $C \in \Pi_{old}$ do $\Pi := \text{refine}(\Pi, C)$ until $\Pi = \Pi_{old}$

return Π // result: S/\sim_{TS}

function refine(Π , C) // divide partitions due to transitions to C**return** $\bigcup_{B \in \Pi}$ refine(B, C)

function refine(*B*, *C*) return $\{\{s \in B \mid s \to t, t \in C\}, \{s \in B \mid \text{no } s \to t \text{ with } t \in C\}\} \setminus \emptyset$

 $\Pi_{AP} = \{\{s \mid L(s) = A\} \mid A \subseteq AP\} \setminus \emptyset$

Example

Properties of refine

Definition

Partition Π is finer than Π' (Π' is coarser than Π) iff

```
for all B \in \Pi there exists C \in \Pi' such that B \subseteq C
```

Key lemmas:

```
Lemma (Coarsest Partition)

S/\sim_{TS} is coarsest partition \Pi such that

• \Pi is finer than \Pi_{AP}

• refine(\Pi, C) = \Pi for all C \in \Pi

Lemma (Properties of refine)

If \Pi, \Pi' are coarser than S/\sim_{TS} then

• refine(\Pi, C) is finer than \Pi
```

• refine(Π , C) is coarser than S/\sim_{TS} for all $C \in \Pi'$

Proof of Coarsest-Partition Lemma

Properties of the Algorithm

Theorem

- The algorithm terminates
- The complexity is $\mathcal{O}(|S| \cdot (|AP| + |\rightarrow|))$
- The result is the set of equivalence classes of \sim_{TS} , i.e., S/\sim_{TS}

Proof

Bisimulation Summary

• $TS_1 \sim TS_2$ iff for all CTL*-formulas Φ : $TS_1 \models \Phi \Leftrightarrow TS_2 \models \Phi$

 $\sim = \equiv_{CTL^*}$

- Smallest bisimilar system to TS: TS/ \sim_{TS} = TS/ \sim
- \sim_{TS} can be used to decide $TS_1 \sim TS_2$
- \sim_{TS} can be computed by partitioning algorithm

A Problem

Current approach:

- Given TS, compute TS/\sim_{TS} and then check formula
- Often, TS/\sim_{TS} is still too large
- Solution: Use abstraction function f such that $TS^{f}(TS_{f}) \ll TS/\sim_{TS}$
- Problem: for these f, $TS^{f} \not\sim TS$ and $TS_{f} \not\sim TS$

 \Rightarrow There are CTL*-formulas Φ and Ψ such that

 $TS^{f} \models \Phi \not\Leftrightarrow TS \models \Phi$ and $TS_{f} \models \Psi \not\Leftrightarrow TS \models \Psi$

 \Rightarrow Need for another connection between transition systems

Simulation Between Two Transition Systems

Let $TS_i = (S_i, \rightarrow_i, I_i, AP, L_i)$ be two transition systems.

Definition

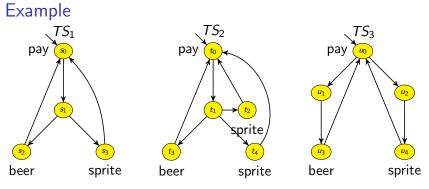
A relation $R \subseteq S_1 imes S_2$ is a simulation relation iff

- 1. for all $s \in I_1$ exists $t \in I_2$: sRt and
- 2. for all sRt it holds:

•
$$L_1(s) = L_2(t)$$

• if $s \rightarrow_1 s'$ then $t \rightarrow_2 t'$ where $s'Rt'$

 TS_1 is simulated by TS_2 ($TS_1 \leq TS_2$) iff there is a simulation relation R for TS_1 and TS_2 Note that unlike \sim, \leq is no equivalence relation



Previous results: $TS_1 \sim TS_2 \not\sim TS_3$

Lemma (Path Simulation)

Let R be a simulation of TS_1 and TS_2 , let s_0Rt_0 . Then for each path

```
s_0 s_1 s_2 s_3 \dots of TS_1
```

there is a similar path, i.e., a path

 $t_0 t_1 t_2 t_3 \dots$ of TS_2

such that for all i: s_iRt_i

Corollary (LTL and Similar Systems) If $TS_1 \preceq TS_2$ then $TS_1 \models \varphi$ if $TS_2 \models \varphi$ for all LTL-formulas φ and $TS_1 \not\models \varphi$ implies $TS_2 \not\models \varphi$ Corollary (LTL and Similar Systems)

Define $\simeq = \preceq \cap \succeq$ (simulation equivalence). Then

$$\simeq \subseteq \equiv_{LTL}$$

RT (ICS @ UIBK)

Simulations and Abstractions

Theorem

Let TS be some transition system, and f be an abstraction function. Then

 $TS \preceq TS^f$ and $TS_f \preceq TS$.

Corollary (Model Checking using Abstractions)

Let φ be arbitrary LTL-formula.

- If $TS^f \models \varphi$ then $TS \models \varphi$
- If $\mathsf{TS}_{\mathsf{f}} \not\models \varphi$ then $\mathsf{TS} \not\models \varphi$

Proof of Theorem

Properties of \preceq

Lemma

- \leq is a pre-order (reflexive and transitive)
- \simeq is an equivalence relation

 $\bullet \ \sim \subseteq \simeq$

Note that both \sim and \simeq satisfy the path simulation lemma and are equivalence relations. Moreover,

 $\equiv_{CTL^*} = \sim \subseteq \simeq \subseteq \equiv_{LTL}$

Questions:

- Is $\sim = \simeq$? Then $\simeq = \equiv_{CTL^*}$
- If not, then where is the difference?

Example

Strengthening the Logic

Knowledge:

- $TS_1 \preceq TS_2$ implies $TS_1 \models \varphi \Leftarrow TS_2 \models \varphi$ for LTL-formulas φ
- $TS_1 \succeq TS_2$ implies $TS_1 \not\models \varphi \Leftarrow TS_2 \not\models \varphi$ for LTL-formulas φ
- $TS_1 \simeq TS_2$ implies $TS_1 \models \varphi \Leftrightarrow TS_2 \models \varphi$ for LTL-formulas φ
- $TS_1 \simeq TS_2$ does not imply $TS_1 \models \Phi \Leftrightarrow TS_2 \models \Phi$ for CTL-formulas Φ
- $TS \preceq TS^f$ and $TS \succeq TS_f$

Want:

• Stronger logic than LTL which allows model-checking via TS^{f} :

$$TS \models \Phi \quad \Leftarrow \quad TS^f \models \Phi$$

• Logic which allows model-checking via TS_f:

$$TS \models \Phi \quad \Leftarrow \quad TS_f \models \Phi$$

$ACTL^* = CTL^*$ with All-Quantifier Only $ACTL^*$ -state-formulas:

$$\Phi ::= a \mid \neg a \mid \Phi \lor \Phi \mid \Phi \land \Phi \mid A \varphi$$

ACTL*-path-formulas:

$$\varphi ::= \mathsf{X}\,\varphi \mid \varphi \,\mathsf{U}\,\varphi \mid \varphi \,\mathsf{R}\,\varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Phi$$

Semantics of release-operator R:

$$\pi \models \varphi \, \mathsf{R} \, \psi \text{ iff } \forall \, n : \pi[n..] \models \psi \text{ or } (\exists \, i : \pi[i..] \models \varphi \text{ and } \forall j \leqslant i : \pi[j..] \models \psi)$$

Derived path-operators:

 $F \varphi \equiv true \cup \varphi \quad and \quad G \varphi \equiv false \mathbb{R} \varphi$ Equivalences: $\neg(\varphi \cup \psi) \equiv \neg \varphi \mathbb{R} \neg \psi \quad and \quad \neg(\varphi \mathbb{R} \psi) \equiv \neg \varphi \cup \neg \psi$

Comparing LTL, ACTL*, and CTL*

Theorem

- ACTL* strictly subsumes LTL
- CTL* strictly subsumes ACTL*

ACTL* strictly subsumes LTL

• First we show that each LTL-formula φ can be translated into positive normal form (PNF), where LTL-formula in PNF has following shape:

$$\varphi ::= \mathsf{X}\,\varphi \mid \varphi \,\mathsf{U}\,\varphi \mid \varphi \,\mathsf{R}\,\varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid a \mid \neg a$$

$$\neg \neg \varphi \quad \rightsquigarrow \quad \varphi$$
$$\neg X \varphi \quad \rightsquigarrow \quad X \neg \varphi$$
$$\neg (\varphi \cup \psi) \quad \rightsquigarrow \quad \neg \varphi \nabla \nabla \psi$$
$$\neg (\varphi \nabla \psi) \quad \rightsquigarrow \quad \neg \varphi \nabla \nabla \psi$$
$$\neg (\varphi \wedge \psi) \quad \rightsquigarrow \quad \neg \varphi \vee \neg \psi$$
$$\neg (\varphi \vee \psi) \quad \rightsquigarrow \quad \neg \varphi \wedge \neg \psi$$

Hence, for LTL-formula φ obtain equivalent ψ in PNF. Then φ is equivalent to the ACTL*-formula A ψ . Thus, ACTL* subsumes LTL.

CTL* strictly subsumes ACTL*

 Obviously, CTL* subsumes ACTL* as release can be expressed using negation and until:

$$\varphi \,\mathsf{R}\,\psi \equiv \neg\neg(\varphi \,\mathsf{R}\,\psi) \equiv \neg(\neg\varphi \,\mathsf{U}\,\neg\psi)$$

• Similar to the previous results between \sim and CTL* one can show that for all ACTL* formulas $\Phi:$

$$TS_1 \preceq TS_2$$
 implies $TS_1 \models \Phi$ if $TS_2 \models \Phi$

Hence,

$$\equiv_{CTL^*} = \sim \subset \simeq \subseteq \equiv_{ACTL^*}$$

shows that there must be CTL*-formulas which cannot be expressed in ACTL*, i.e., CTL* strictly subsumes ACTL*.

ECTL*

Results so far:

• ACTL*: Stronger logic than LTL, model-checking via TS^f:

$$TS \models \Phi \quad \Leftarrow \quad TS^f \models \Phi$$

• ECTL*: Logic, model-checking via TS_f:

$$TS \models \Phi \quad \Leftarrow \quad TS_f \models \Phi$$

ECTL*-state-formulas:

 $\Phi ::= a \mid \neg a \mid \Phi \lor \Phi \mid \Phi \land \Phi \mid \mathsf{E}\varphi$

ECTL*-path-formulas:

 $\varphi ::= \mathsf{X} \, \varphi \mid \varphi \, \mathsf{U} \, \varphi \mid \varphi \, \mathsf{R} \, \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Phi$

Simulation Summary

• Abstractions do not often lead to bisimulations, but always result in simulations:

$$TS \preceq TS^f$$
 and $TS_f \succeq TS$

 ACTL* is between LTL and CTL* and can be checked for model-checking using abstractions (over-approximations)

 $TS_1 \preceq TS_2$ implies $TS_1 \models \Phi$ if $TS_2 \models \Phi$

• ECTL* is sublogic of CTL* and can be checked for model-checking susing abstractions (under-approximations)

 $TS_1 \succeq TS_2$ implies $TS_1 \models \Phi$ if $TS_2 \models \Phi$

- Reversing the directions yields methods to refute formulas
- Not shown:
 - Computing the quotient of \simeq in analogy to $S/{\sim}$
 - How to obtain initial abstractions, abstraction refinement

Summary

- Aim: Try to solve the state-space explosion problem
- Bisimular systems satisfy the same CTL*-formulas
- Quotient S/\sim can efficiently be determined by partition-refinement
- If quotient is too large, one can further reduce the system-size by abstractions (over-approximation TS^f and under-approximation TS_f) \Rightarrow obtain simulation only
- For simulations LTL and (A/E)CTL* can be used, but neither CTL nor CTL*
- Challenge: Find good abstractions