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Ways to Solve the State Space Explosion Problem

Let TS=(S,—, 1, AP, L) be transition system
Abstraction: f: S — S such that |S| < |S|, obtain TS
Then perform model checking on abstract system: TS E e?

¢ Questions:
o If TS E ¢, what about TS = ¢?
o If TS £ o, what about TS £ ¢
e How to obtain 7

e Some answers:
o If % is a bisimulation of TS then 7'?5 Eoeiff TSE ¢ (CTL*)
e If TS's a simulation of TS then TS E ¢ implies TS = ¢ (ACTL*)
e If TSis a simulation of TS then TS E ¢ implies TS = ¢ (ECTL*)
e Computation of f such that TS is smallest bisimular system to TS
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Abstraction
Let TS=(S,—,/,AP,L) and S be a set of (abstract) states

Definition (Abstraction Function)
A function f : S — S is an abstraction function iff

f(s) = f(s") implies L(s) = L(s")

Definition (Abstracted Transition System)

For every abstraction function f, define the over-approximation
TS" = (S, =, I, AP, L) where Lf(f(s)) = L(s), If = {f(s) | s € I}, and
—f is smallest relation such that
o 5 — & implies f(s) — f(s')
The under-approximation is TSf = (g, —¢,l¢, AP, L¢) where L = LT,
Ir = If, and —¢ is largest relation such that

o f(s) —f s implies s — s’ for some s’ such that f(s') =5
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Abstraction

Example
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Different Kinds of Abstractions

e Variable abstraction: only store subset of all variables
e.g., state (x,y, loc) ~~ state (x, loc)

e Data abstraction: concrete domain ~ abstract (smaller) domain
e.g., IN ~~ {even, odd} or IN ~» {pos, 0, neg}

e Predicate abstraction: state ~» valuation of the predicates
e.g., state (x,y, loc) ~~ state (x > 0,x > y, loc = crit)
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Example: Bakery algorithm
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Bakery Algorithm: Transition System
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Bakery Algorithm: Abstraction

RT (ICS @ UIBK) week 4 12/53


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Abstraction Summary

Abstraction function f : S — S for AP such that

f(s) = f(s') implies L(s) = L(s")

From large (possibly infinite) system TS obtain
small (possibly finite) abstract system TS or TS¢

Check TS" = ¢ or TS; |= ¢ instead of TS |= ¢
o Open question: relation between TS' |= ¢, TS; = ¢, and TS = ¢
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Bisimulation Between Two Transition Systems

Let TS; = (Si, —1i, li, AP, L;) be two transition systems.

Definition
A relation R C 51 x Sy is a bisimulation relation iff
1. for all s € l; exists t € I : sRt and
for all t € I exists s € 1 : sRt and
2. for all sRt it holds:
o Li(s) = Lo(t)
o if s —; s’ then t —5 t' where s'Rt/
o if t —5 t’' then s —1 s’ where 'Rt/
TS; and TS, are bisimilar (TS; ~ TS») iff there is a bisimulation relation

R for TSy and TS,
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Bisimulation mulation of Transition Systems

Example
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Properties of Bisimulations

Lemma
~ is an equivalence relation (~ is reflexive, symmetric, transitive)

Lemma (Path Bisimulation)

Let R be a bisimulation of TSy and TS,, let soRty.
Then for each path
505152S53... OfTSl

there is a bisimilar path, i.e., a path
totitrtz... of TS,
such that for all i: s;Rt;

Corollary (LTL-Equivalence of Bisimilar Systems)
If TSy ~ TSy then TSy |= ¢ iff TSy = ¢ for all LTL-formulas ¢
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Bisimulation of States

e Up to now: Bisimulation between two transition systems
e Upcoming: Bisimulation between states of same system

= Minimize number of states

Definition (Bisimilar States)

Let TS=(S,—, 1, AP, L) be a transition system.
R C S x S is a bisimulation for TS such that for all sRt:

o L(s)=L(t)
e if s —» s’ then t — t’' where s’Rt’

o if t — t’ then s — s’ where s’Rt/

States s and t are bisimilar for TS (s ~7s t) iff
there exists bisimulation R for TS with sRt.

RT (ICS @ UIBK) week 4 18/53


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Properties of ~ 15
Let TS=(S,—, 1, AP, L) be a transition system.
Lemma

e ~ s is an equivalence relation on S
e ~ s is a bisimulation for TS

e ~ g is the largest bisimulation for TS
® 5] ~TS S Iff(S, —, {51}, AP, L) ~ (S, —, {52}, AP, L)

Consequence: Deciding TSy ~ TS; via ~Ts

Corollary (Check of bisimilarity of transition systems)
Let TS; = (5,', —i, 1, AP, L,') with So NSy = &. Then TSy ~ TSy iff

for all s; € I; there is s;_; € li_; such that s; ~15 s1_;
where TS = (50 US;,—oU —1,93,AP, Lo U Ll)

RT (ICS @ UIBK) week 4
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Bisimulation Bisimulation of States

Proof of Lemma
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Short Reminder: CTL*

A state-formula ® holds in state s (written s = ®) iff

skEa iff ae L(s)

sE -9 iff s

sEPAV iff sEdandsE WV

sEEp iff 7 = o for some path 7 that starts in s

A path-formula ¢ holds for path 7 (written 7 |= ) iff

TE=Xp iff 7[1..] E ¢
TEpUy  iff (3n>=0.7[n.] = and (VO < i< n.n[i.] = ¢))
TEeANY iffTtlEgeand 7 =Y
7= iff 7 = o
TEo iff 7[0] = ®
Derived operators: A, F,G,V,...

RT (ICS @ UIBK) week 4
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Bisimulation and CTL*

Let TS=(S,—,1,AP,L). Define =¢c7;- CS xS as

s =cri~ tiff (s = @ iff t = @) for all CTL*-state-formulas ¢

Similar definition for =¢c1;

Theorem
=cTL = =cTir = ~TS

= Bisimilar systems satisfy the same CTL*-formulas
= Non-bisimilar systems can be distinguished by a CTL-formula
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Bisimulation ulation and Temporal Logics

Proof
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Bisimulation Bisimulation and Temporal Logics

Proof Continued
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Quotient System

Since ~ s is equivalence relation, we can write [s].,s as the equivalence
class to which s belongs ([s]~,c = {t | s ~7s t}).
Definition (Quotient of a Transition System)
Let TS=(S,—, I, AP, L). The quotient system TS/~7s
(or TS/~ for short) is defined as (S',—',I", AP, L'):
e = S/nrs={[slors | 5€ S}
e whenever s — t then [s].,; =/ [t]~ s
o = 1/~1s={lslers | s € 1}
o L([slars) = L(s)

Theorem
TS~ (TS/ ~)
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Examples

o Bakery-Algorithm: TS = TS/~
(However, often TS is not a bisimulation)

e Vending machines: TS/~ = TS1, s3 = [to]wrs, = [t3]~rs, = {t2, t3}
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Obtaining Quotients

If one can compute ~ 15 then one can easily
e minimize TS to quotient system TS/~
e check whether TSy ~ TS;

Problem: How to obtain ~7g?

¢ Naive algorithm:
~T7s =0
forall RC S x S do
if R is bisimulation for TS then ~15:= ~7sUR

Naive algorithm is exponential in |S| = not applicable

e Partition-Refinement-Algorithm, complexity: O(|S| - (JAP| + |—]))
e (Improved PR-Algorithm, complexity: O(|S| - |AP| + log|S| - |—|))

RT (ICS @ UIBK) week 4
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Idea of a Partition Refinement Algorithm

e Work with partitions N = {Bj,...,Bp} of S
(UB/ZS, B;ﬂszzfori;éj, B;#@)

e Partition I contains candidates for equivalence classes

e If I1is to coarse since some B contains obviously non-equivalent
states s and t then refine 1 and split B into smaller parts B; and B,
suchthat s€ By and t € B

= Refine initial 1 until no further splitting is required

e Final value of NN = {Cy,..., Cx} contains real equivalence classes C;
of ~1s

= s ~Tstiff s,t are contained in same C;
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Partition Refinement Algorithm
M:=Map // partitioning of S due to labeling with AP
repeat

Mog :=T1

for all C €,y do

M := refine(MN, C)

until M = lMyy
return 1 // result: S/~7s

function refine(I, C) // divide partitions due to transitions to C
return |Jg.p refine(B, C)

function refine(B, C)
return {{sc€ B|s—t,tc C},{se€B|nos—twithte C}}\@

Map={{s|L(s)=A} | AC AP} \ @
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Bisimulation Quotient Systems

Example
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Properties of refine

Definition
Partition I is finer than N’ (M’ is coarser than M) iff

for all B € I there exists C € N’ such that B C C

Key lemmas:

Lemma (Coarsest Partition)

S/~Ts is coarsest partition 1 such that
o [1 is finer than Myp
e refine(l,C) =T for all C €T

Lemma (Properties of refine)
If N, 1 are coarser than S/~ s then
e refine(I, C) is finer than T
o refine(MN, C) is coarser than S /~vs for all C € TV
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Bisimulation Quotient Systems

Proof of Coarsest-Partition Lemma
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Properties of the Algorithm

Theorem

e The algorithm terminates
o The complexity is O(|S| - (JAP| + |—]))
e The result is the set of equivalence classes of ~1s, i.e., S/~Ts
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Proof
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Bisimulation Summary

TS; ~ TS, iff for all CTL*-formulas ®: TS E® < TS, E ¢

~ = =CTLr

Smallest bisimilar system to TS: TS/~7s= TS/~

~71s can be used to decide TS; ~ TS

~ 75 can be computed by partitioning algorithm
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A Problem

Current approach:
e Given TS, compute TS/~71s and then check formula
e Often, TS/~7s is still too large
e Solution: Use abstraction function f such that TSf(TSf) < TS/~7s
e Problem: for these f, TS" « TS and TSf 4 TS
= There are CTL*-formulas ® and W such that
TS =04 TSE® and TSfEV A TSEV

= Need for another connection between transition systems
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Simulation Between Two Transition Systems

Let TS; = (Si, —i, li, AP, L;) be two transition systems.

Definition
A relation R C S; x S5 is a simulation relation iff
1. for all s € I} exists t € I, : sRt and
2. for all sRt it holds:
o Li(s) = La(t)
e if s —; s’ then t —» t’ where s'Rt’
TSy is simulated by TSy (TS1 < TSy) iff there is a simulation relation R

for TS]_ and T52
Note that unlike ~, < is no equivalence relation
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Example

T51 T52
pay (=) pay (n)
e\ ee
0,
(=) ©, (&) (&)
beer sprite beer sprite

Previous results: TSy ~ TS, £ TS3

RT (ICS @ UIBK) week 4
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Lemma (Path Simulation)

Let R be a simulation of TSy and TSy, let syRty.
Then for each path
$0S51553... of TSy

there is a similar path, i.e., a path
totitatz... of TSy

such that for all i: s;Rt;

Corollary (LTL and Similar Systems)

If TSy = TSy then TSy |= ¢ if TSy = ¢ for all LTL-formulas ¢
and TSy [~ ¢ implies TSy = ¢

Corollary (LTL and Similar Systems)
Define ~ = <N = (simulation equivalence). Then
~C =7
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Simulations and Abstractions

Theorem
Let TS be some transition system, and f be an abstraction function. Then

TS=< TS and TSF < TS.

Corollary (Model Checking using Abstractions)
Let @ be arbitrary LTL-formula.

o If TS" = then TS = ¢

o If TSf [~ ¢ then TS |~ ¢
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Proof of Theorem
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Properties of <

Lemma

e = is a pre-order (reflexive and transitive)
e ~ js an equivalence relation

.Ngg

Note that both ~ and = satisfy the path simulation lemma and are
equivalence relations. Moreover,

=crir=~C>C =1

Questions:
o |s~ =~? Then ~ = =¢c7y+
e |If not, then where is the difference?
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Example
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Strengthening the Logic
Knowledge:

e TS; <X TS, implies TS; = ¢ < TS, = ¢ for LTL-formulas ¢

o TS; = TS, implies TS; [ ¢ < TSy [~ ¢ for LTL-formulas ¢
o TS; ~ TS, implies TS1 = ¢ < TS = ¢ for LTL-formulas ¢
e TS; ~ TS, does not imply TS; = ® < TS, = @ for CTL-formulas ¢
e TS<TS" and TS TS

Want:

e Stronger logic than LTL which allows model-checking via TS:
TSE® « TS EO
e Logic which allows model-checking via TS5¢:

TSE® <« TSEO
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ACTL* = CTL* with All-Quantifier Only

ACTL*-state-formulas:

bui=al-a|PVO|PAD|Ap

ACTL*-path-formulas:

pr=Xp|loUp|oRp|loVe|lone|®
Semantics of release-operator R:
TEeRYiffVYn:xwn.]Evor (3i:n[i]EpandVj<i:n[j.] Ev)
Derived path-operators:

Fo=trueUp and Gy =falseRyp
Equivalences:

~(pU)=-pR—p  and  —(pRY)=-pU-
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___ Smulation
Comparing LTL, ACTL*, and CTL*

Theorem

o ACTL* strictly subsumes LTL
o CTL* strictly subsumes ACTL*
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ACTL* strictly subsumes LTL

e First we show that each LTL-formula ¢ can be translated into positive
normal form (PNF), where LTL-formula in PNF has following shape:

pu=Xp|leUp|pRploVo|pAplal-a

=X
(e U)
~(¢RY)
(o A1)
(¢ V)

N

$ 8

~

X=p

~pR—=y
A
—\gp\/—\w

Hence, for LTL-formula ¢ obtain equivalent ¢ in PNF. Then ¢ is equivalent
to the ACTL*-formula A. Thus, ACTL* subsumes LTL.

RT (ICS @ UIBK) week 4
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CTL* strictly subsumes ACTL*

e Obviously, CTL* subsumes ACTL* as release can be expressed using
negation and until:

eRp = —=(pRep) = =(-p U )
e Similar to the previous results between ~ and CTL* one can show
that for all ACTL* formulas ¢:
TS; X TS, implies TS E @ if TS, = ¢
Hence,
=cT1r =~ C > C =AcT1

shows that there must be CTL*-formulas which cannot be expressed
in ACTL*, i.e., CTL* strictly subsumes ACTL*.
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ECTL*

Results so far:
e ACTL*: Stronger logic than LTL, model-checking via TS':

TSE® « TSEo
e ECTL*: Logic, model-checking via T5¢:
TSE® <« TS5EF¢
ECTL*-state-formulas:
bu=a|-a|dPVP|PAD|EY
ECTL*-path-formulas:

pr=Xp|leUp|oRp|loVelpAp|d
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Simulation Summary

e Abstractions do not often lead to bisimulations, but always result in
simulations:

TS<T7S"  and TS = TS

e ACTL* is between LTL and CTL* and can be checked for
model-checking using abstractions (over-approximations)

T51 j T52 implies TSl ': d if T52 ): 0]

e ECTL* is sublogic of CTL* and can be checked for model-checking
using abstractions (under-approximations)

T51 t T52 implies TSl ': d if T52 ): O]

e Reversing the directions yields methods to refute formulas
Not shown:

e Computing the quotient of ~ in analogy to S/~
e How to obtain initial abstractions, abstraction refinement
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Summary

e Aim: Try to solve the state-space explosion problem
e Bisimular systems satisfy the same CTL*-formulas
e Quotient S/~ can efficiently be determined by partition-refinement

e If quotient is too large, one can further reduce the system-size by
abstractions (over-approximation TS" and under-approximation TSf)
= obtain simulation only

e For simulations LTL and (A/E)CTL* can be used,
but neither CTL nor CTL*

e Challenge: Find good abstractions
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