

Model Checking

René Thiemann

Institute of Computer Science
University of Innsbruck

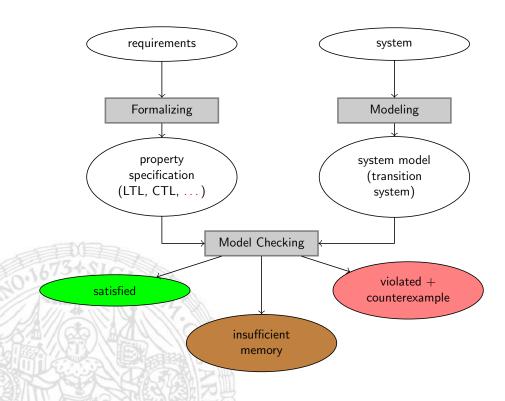
SS 2008

RT (ICS @ UIBK) week 4 1/53

Outline

- Motivation
- Abstraction
- Bisimulation
 - Bisimulation of Transition Systems
 - Bisimulation of States
 - Bisimulation and Temporal Logics
 - Quotient Systems
- Simulation
- Summary

Model Checking Overview



RT (ICS @ UIBK) week 4 4/53

Motivation

Ways to Solve the State Space Explosion Problem

- Let $TS = (S, \rightarrow, I, AP, L)$ be transition system
- Abstraction: $f: S \to \widehat{S}$ such that $|\widehat{S}| \ll |S|$, obtain \widehat{TS}
- Then perform model checking on abstract system: $\widehat{\mathit{TS}} \models \varphi$?
- Questions:
 - If $\widehat{\mathit{TS}} \models \varphi$, what about $\mathit{TS} \models \varphi$?
 - If $\widehat{\mathit{TS}} \not\models \varphi$, what about $\mathit{TS} \not\models \varphi$
 - How to obtain f?
- Some answers:
 - If \widehat{TS} is a bisimulation of TS then $\widehat{TS} \models \varphi$ iff $TS \models \varphi$ (CTL*)
 - If $\widehat{\mathit{TS}}$ is a simulation of TS then $\widehat{\mathit{TS}} \models \varphi$ implies $\mathit{TS} \models \varphi$ (ACTL*)
 - If TS is a simulation of \widehat{TS} then $\widehat{TS} \models \varphi$ implies $TS \models \varphi$ (ECTL*)
 - Computation of f such that \widehat{TS} is smallest bisimular system to TS

Abstraction

Let $TS = (S, \rightarrow, I, AP, L)$ and \widehat{S} be a set of (abstract) states

Definition (Abstraction Function)

A function $f: S \to \widehat{S}$ is an abstraction function iff

$$f(s) = f(s')$$
 implies $L(s) = L(s')$

Definition (Abstracted Transition System)

For every abstraction function f, define the over-approximation $TS^f = (\widehat{S}, \rightarrow^f, I^f, AP, L^f)$ where $L^f(f(s)) = L(s)$, $I^f = \{f(s) \mid s \in I\}$, and \rightarrow^f is smallest relation such that

• $s \to s'$ implies $f(s) \to^f f(s')$

The under-approximation is $TS_f = (\widehat{S}, \rightarrow_f, I_f, AP, L_f)$ where $L_f = L^f$, $I_f = I^f$, and \rightarrow_f is largest relation such that

• $f(s) \rightarrow_f \widehat{s}$ implies $s \rightarrow s'$ for some s' such that $f(s') = \widehat{s}$

RT (ICS @ UIBK) week 4 7/53

INIZ

Example

Different Kinds of Abstractions

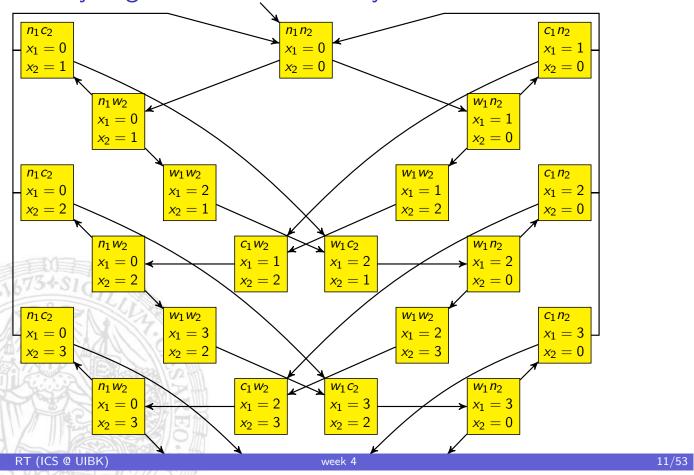
- Variable abstraction: only store subset of all variables e.g., state $(x, y, loc) \rightsquigarrow state(x, loc)$
- Data abstraction: concrete domain \leadsto abstract (smaller) domain e.g., $\mathbb{N} \leadsto \{even, odd\}$ or $\mathbb{N} \leadsto \{pos, 0, neg\}$
- Predicate abstraction: state \rightsquigarrow valuation of the predicates e.g., state $(x, y, loc) \rightsquigarrow$ state (x > 0, x > y, loc = crit)

RT (ICS @ UIBK) week 4 9/5:

Abstraction

Example: Bakery algorithm

Bakery Algorithm: Transition System



Abstraction

Bakery Algorithm: Abstraction

Abstraction Summary

• Abstraction function $f: S \to \widehat{S}$ for AP such that

$$f(s) = f(s')$$
 implies $L(s) = L(s')$

- From large (possibly infinite) system TS obtain small (possibly finite) abstract system TS^f or TS_f
- Check $TS^f \models \varphi$ or $TS_f \models \varphi$ instead of $TS \models \varphi$
- ullet Open question: relation between $\mathit{TS}^f \models arphi$, $\mathit{TS}_f \models arphi$, and $\mathit{TS} \models arphi$

RT (ICS @ UIBK) week 4 13/5

Bisimulation of Transition Systems

Bisimulation Between Two Transition Systems

Let $TS_i = (S_i, \rightarrow_i, I_i, AP, L_i)$ be two transition systems.

Definition

A relation $R \subseteq S_1 \times S_2$ is a bisimulation relation iff

- 1. for all $s \in I_1$ exists $t \in I_2 : sRt$ and for all $t \in I_2$ exists $s \in I_1 : sRt$ and
- 2. for all sRt it holds:
 - $\bullet L_1(s) = L_2(t)$
 - if $s \rightarrow_1 s'$ then $t \rightarrow_2 t'$ where s'Rt'
 - ullet if $t o_2 t'$ then $s o_1 s'$ where s'Rt'

 TS_1 and TS_2 are bisimilar ($TS_1 \sim TS_2$) iff there is a bisimulation relation R for TS_1 and TS_2

Example

Bisimulation Bisimulation of Transition Systen

Properties of Bisimulations

Lemma

 \sim is an equivalence relation (\sim is reflexive, symmetric, transitive)

Lemma (Path Bisimulation)

Let R be a bisimulation of TS_1 and TS_2 , let s_0Rt_0 . Then for each path

$$s_0 s_1 s_2 s_3 \dots$$
 of TS_1

there is a bisimilar path, i.e., a path

$$t_0 t_1 t_2 t_3 \dots$$
 of TS_2

such that for all i: siRti

Corollary (LTL-Equivalence of Bisimilar Systems)

If $\mathit{TS}_1 \sim \mathit{TS}_2$ then $\mathit{TS}_1 \models \varphi$ iff $\mathit{TS}_2 \models \varphi$ for all LTL-formulas φ

Bisimulation Bisimulation of States

Bisimulation of States

- Up to now: Bisimulation between two transition systems
- Upcoming: Bisimulation between states of same system
- ⇒ Minimize number of states

Definition (Bisimilar States)

Let $TS = (S, \rightarrow, I, AP, L)$ be a transition system. $R \subset S \times S$ is a bisimulation for TS such that for all sRt:

- L(s) = L(t)
- if $s \rightarrow s'$ then $t \rightarrow t'$ where s'Rt'
- if $t \to t'$ then $s \to s'$ where s'Rt'

States s and t are bisimilar for TS ($s \sim_{TS} t$) iff there exists bisimulation R for TS with sRt.

RT (ICS @ UIBK) week 4 18/53

Bisimulation Bisimulation of State

Properties of \sim_{TS}

Let $TS = (S, \rightarrow, I, AP, L)$ be a transition system.

Lemma

- \sim_{TS} is an equivalence relation on S
- \sim_{TS} is a bisimulation for TS
- ullet \sim_{TS} is the largest bisimulation for TS
- $s_1 \sim_{TS} s_2 \ \textit{iff} \ (S, \to, \{s_1\}, AP, L) \sim (S, \to, \{s_2\}, AP, L)$

Consequence: Deciding $TS_0 \sim TS_1$ via \sim_{TS}

Corollary (Check of bisimilarity of transition systems)

Let
$$TS_i = (S_i, \rightarrow_i, I_i, AP, L_i)$$
 with $S_0 \cap S_1 = \emptyset$. Then $TS_0 \sim TS_1$ iff

for all $s_i \in I_i$ there is $s_{1-i} \in I_{1-i}$ such that $s_i \sim_{TS} s_{1-i}$

where
$$TS = (S_0 \cup S_1, \rightarrow_0 \cup \rightarrow_1, \varnothing, AP, L_0 \cup L_1)$$

Bisimulation Bisimulation of States

Proof of Lemma

RT (ICS @ UIBK) week 4 20/53

Risimulation

Bisimulation and Temporal Logics

Short Reminder: CTL*

A state-formula Φ holds in state s (written $s \models \Phi$) iff

```
s \models a iff a \in L(s)

s \models \neg \Phi iff s \not\models \Phi

s \models \Phi \land \Psi iff s \models \Phi and s \models \Psi

s \models E\varphi iff \pi \models \varphi for some path \pi that starts in s
```

A path-formula φ holds for path π (written $\pi \models \varphi$) iff

```
\pi \models \mathsf{X}\,\varphi \qquad \text{iff } \pi[1..] \models \varphi
\pi \models \varphi \, \mathsf{U}\,\psi \qquad \text{iff } (\exists \, n \geqslant 0.\,\pi[n..] \models \psi \text{ and } (\forall \, 0 \leqslant i < n.\,\pi[i..] \models \varphi))
\pi \models \varphi \wedge \psi \qquad \text{iff } \pi \models \varphi \text{ and } \pi \models \psi
\pi \models \neg \varphi \qquad \text{iff } \pi \not\models \varphi
\pi \models \Phi \qquad \text{iff } \pi[0] \models \Phi
```

Derived operators: A, F, G, \vee, \dots

Bisimulation and CTL*

Let $TS = (S, \rightarrow, I, AP, L)$. Define $\equiv_{CTL^*} \subseteq S \times S$ as $s \equiv_{CTL^*} t$ iff $(s \models \Phi)$ for all CTL*-state-formulas Φ

Similar definition for \equiv_{CTL}

Theorem

$$\equiv_{CTL} = \equiv_{CTL^*} = \sim_{TS}$$

- ⇒ Bisimilar systems satisfy the same CTL*-formulas
- ⇒ Non-bisimilar systems can be distinguished by a CTL-formula

RT (ICS @ UIBK) week 4 22/5

Bisimulation

Bisimulation and Temporal Logics

Proof

Proof Continued

RT (ICS @ UIBK) week 4 24/5

Bisimulation Quotient System

Quotient System

Since \sim_{TS} is equivalence relation, we can write $[s]_{\sim_{TS}}$ as the equivalence class to which s belongs $([s]_{\sim_{TS}} = \{t \mid s \sim_{TS} t\})$.

Definition (Quotient of a Transition System)

Let $TS = (S, \rightarrow, I, AP, L)$. The quotient system TS/\sim_{TS} (or TS/\sim for short) is defined as $(S', \rightarrow', I', AP, L')$:

- $S' = S/\sim_{TS} = \{[s]_{\sim_{TS}} \mid s \in S\}$
- whenever $s \to t$ then $[s]_{\sim_{TS}} \to' [t]_{\sim_{TS}}$
- $\bullet \ I' = I/\sim_{TS} = \{[s]_{\sim_{TS}} \mid s \in I\}$
- $L'([s]_{\sim_{TS}}) = L(s)$

Theorem

$$TS \sim (TS/\sim)$$

Examples

• Bakery-Algorithm: $TS^f = TS/\sim$ (However, often TS^f is not a bisimulation)

• Vending machines: $TS_2/\sim = TS_1$, $s_3 = [t_2]_{\sim_{TS_2}} = [t_3]_{\sim_{TS_2}} = \{t_2, t_3\}$

Bisimulation Quotient System

Obtaining Quotients

If one can compute \sim_{TS} then one can easily

- minimize TS to quotient system TS/\sim
- ullet check whether $TS_0 \sim TS_1$

Problem: How to obtain \sim_{TS} ?

Naive algorithm:

$$\sim_{TS} := \varnothing$$
 for all $R \subseteq S \times S$ do

if R is bisimulation for TS then $\sim_{TS} := \sim_{TS} \cup R$

Naive algorithm is exponential in $|S| \Rightarrow$ not applicable

- Partition-Refinement-Algorithm, complexity: $\mathcal{O}(|S| \cdot (|AP| + |\rightarrow|))$
- (Improved PR-Algorithm, complexity: $\mathcal{O}(|S| \cdot |AP| + log|S| \cdot |\rightarrow|)$)

Idea of a Partition Refinement Algorithm

- Work with partitions $\Pi = \{B_1, \dots, B_n\}$ of S $(\cup B_i = S, B_i \cap B_j = \emptyset \text{ for } i \neq j, B_i \neq \emptyset)$
- Partition Π contains candidates for equivalence classes
- If Π is to coarse since some B contains obviously non-equivalent states s and t then refine Π and split B into smaller parts B_1 and B_2 such that $s \in B_1$ and $t \in B_2$
- Refine initial Π until no further splitting is required
- Final value of $\Pi = \{C_1, \dots, C_k\}$ contains real equivalence classes C_i of \sim_{TS}
- \Rightarrow $s \sim_{TS} t$ iff s, t are contained in same C_i

RT (ICS @ UIBK) week 4 28/53

Bisimulation Quotient System

Partition Refinement Algorithm

```
\begin{split} \Pi &:= \Pi_{AP} \  \  /\! / \  \, \text{partitioning of } S \text{ due to labeling with } AP \\ \textbf{repeat} \\ & \Pi_{old} := \Pi \\ \textbf{for all } C \in \Pi_{old} \textbf{ do} \\ & \Pi := \text{refine}(\Pi,C) \\ \textbf{until } \Pi = \Pi_{old} \\ \textbf{return } \Pi \  \  /\! / \  \, \text{result: } S/\!\!\sim_{TS} \end{split}
```

function refine(Π , C) // divide partitions due to transitions to C return $\bigcup_{B \in \Pi} \text{refine}(B, C)$

function refine(B, C) **return** $\{\{s \in B \mid s \to t, t \in C\}, \{s \in B \mid \text{no } s \to t \text{ with } t \in C\}\} \setminus \emptyset$

$$\Pi_{AP} = \{ \{ s \mid L(s) = A \} \mid A \subseteq AP \} \setminus \varnothing$$

Example

RT (ICS @ UIBK) week 4 30/53

Bisimulation Quotient System

Properties of refine

Definition

Partition Π is finer than Π' (Π' is coarser than Π) iff

for all $B \in \Pi$ there exists $C \in \Pi'$ such that $B \subseteq C$

Key lemmas:

Lemma (Coarsest Partition)

 $S/{\sim_{\mathit{TS}}}$ is coarsest partition Π such that

- Π is finer than Π_{AP}
- refine(Π, C) = Π for all $C \in \Pi$

Lemma (Properties of refine)

If Π, Π' are coarser than $S/{\sim_{TS}}$ then

- refine(Π , C) is finer than Π
- refine(Π, C) is coarser than S/\sim_{TS} for all $C \in \Pi'$

Proof of Coarsest-Partition Lemma

Bisimulation Quotient System

Properties of the Algorithm

Theorem

- The algorithm terminates
- The complexity is $\mathcal{O}(|S| \cdot (|AP| + |\rightarrow|))$
- The result is the set of equivalence classes of \sim_{TS} , i.e., S/\sim_{TS}

Proof

RT (ICS @ UIBK) week 4 34/53

Bisimulation Quotient System

Bisimulation Summary

• $TS_1 \sim TS_2$ iff for all CTL*-formulas Φ : $TS_1 \models \Phi \Leftrightarrow TS_2 \models \Phi$

$$\sim = \equiv_{CTL^*}$$

- Smallest bisimilar system to TS : $\mathit{TS}/{\sim_{\mathit{TS}}} = \mathit{TS}/{\sim}$
- ullet \sim_{TS} can be used to decide $\mathit{TS}_1 \sim \mathit{TS}_2$
- ullet \sim_{TS} can be computed by partitioning algorithm

A Problem

Current approach:

- Given TS, compute TS/\sim_{TS} and then check formula
- Often, TS/\sim_{TS} is still too large
- Solution: Use abstraction function f such that $TS^f(TS_f) \ll TS/{\sim_{TS}}$
- Problem: for these f, $TS^f \nsim TS$ and $TS_f \nsim TS$
- \Rightarrow There are CTL*-formulas Φ and Ψ such that

$$TS^f \models \Phi \not\Leftrightarrow TS \models \Phi$$
 and $TS_f \models \Psi \not\Leftrightarrow TS \models \Psi$

⇒ Need for another connection between transition systems

RT (ICS @ UIBK) week 4 37/5

Simulation Between Two Transition Systems

Let $TS_i = (S_i, \rightarrow_i, I_i, AP, L_i)$ be two transition systems.

Definition

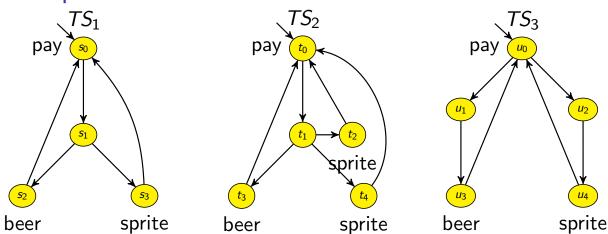
A relation $R \subseteq S_1 \times S_2$ is a simulation relation iff

- 1. for all $s \in I_1$ exists $t \in I_2$: sRt and
- 2. for all sRt it holds:
 - $L_1(s) = L_2(t)$
 - if $s \rightarrow_1 s'$ then $t \rightarrow_2 t'$ where s'Rt'

 TS_1 is simulated by TS_2 ($TS_1 \leq TS_2$) iff there is a simulation relation R for TS_1 and TS_2

Note that unlike \sim , \leq is no equivalence relation

Example



Previous results: $TS_1 \sim TS_2 \not\sim TS_3$

RT (ICS @ UIBK) week 4 39/53

Simulation

Lemma (Path Simulation)

Let R be a simulation of TS_1 and TS_2 , let s_0Rt_0 . Then for each path

$$s_0 s_1 s_2 s_3 \dots$$
 of TS_1

there is a similar path, i.e., a path

$$t_0 t_1 t_2 t_3 \dots$$
 of TS_2

such that for all i: s_iRt_i

Corollary (LTL and Similar Systems)

If $TS_1 \leq TS_2$ then $TS_1 \models \varphi$ if $TS_2 \models \varphi$ for all LTL-formulas φ and $TS_1 \not\models \varphi$ implies $TS_2 \not\models \varphi$

Corollary (LTL and Similar Systems)

Define $\simeq = \preceq \cap \succeq$ (simulation equivalence). Then

$$\simeq \subseteq \equiv_{LTL}$$

Simulations and Abstractions

Theorem

Let TS be some transition system, and f be an abstraction function. Then

$$TS \prec TS^f$$

$$TS \preceq TS^f$$
 and $TS_f \preceq TS$.

Corollary (Model Checking using Abstractions)

Let φ be arbitrary LTL-formula.

- If $TS^f \models \varphi$ then $TS \models \varphi$
- If $TS_f \not\models \varphi$ then $TS \not\models \varphi$

RT (ICS @ UIBK) 41/53

Proof of Theorem

Properties of \leq

Lemma

- *≤* is a pre-order (reflexive and transitive)
- ullet \simeq is an equivalence relation
- $\sim \subseteq \simeq$

Note that both \sim and \simeq satisfy the path simulation lemma and are equivalence relations. Moreover,

$$\equiv_{CTL^*} = \sim \subseteq \simeq \subseteq \equiv_{LTL}$$

Questions:

- Is $\sim = \simeq$? Then $\simeq = \equiv_{CTL^*}$
- If not, then where is the difference?

RT (ICS @ UIBK) week 4 43/53

Simulation

Example

Strengthening the Logic

Knowledge:

- $\mathit{TS}_1 \preceq \mathit{TS}_2$ implies $\mathit{TS}_1 \models \varphi \Leftarrow \mathit{TS}_2 \models \varphi$ for LTL-formulas φ
- $TS_1 \succeq TS_2$ implies $TS_1 \not\models \varphi \Leftarrow TS_2 \not\models \varphi$ for LTL-formulas φ
- $\mathit{TS}_1 \simeq \mathit{TS}_2$ implies $\mathit{TS}_1 \models \varphi \Leftrightarrow \mathit{TS}_2 \models \varphi$ for LTL-formulas φ
- $TS_1 \simeq TS_2$ does not imply $TS_1 \models \Phi \Leftrightarrow TS_2 \models \Phi$ for CTL-formulas Φ
- $TS \leq TS^f$ and $TS \succeq TS_f$

Want:

• Stronger logic than LTL which allows model-checking via TS^f :

$$TS \models \Phi \quad \Leftarrow \quad TS^f \models \Phi$$

• Logic which allows model-checking via TS_f :

$$TS \models \Phi \quad \Leftarrow \quad TS_f \models \Phi$$

RT (ICS @ UIBK) week 4 45/53

Simulation

ACTL* = CTL* with All-Quantifier Only

ACTL*-state-formulas:

$$\Phi ::= a \mid \neg a \mid \Phi \lor \Phi \mid \Phi \land \Phi \mid A \varphi$$

ACTL*-path-formulas:

$$\varphi ::= \mathsf{X} \varphi \mid \varphi \, \mathsf{U} \varphi \mid \varphi \, \mathsf{R} \varphi \mid \varphi \, \mathsf{V} \varphi \mid \varphi \, \land \varphi \mid \Phi$$

Semantics of release-operator R:

$$\pi \models \varphi \mathsf{R} \psi \mathsf{iff} \ \forall \ n : \pi[n..] \models \psi \mathsf{or} \ (\exists \ i : \pi[i..] \models \varphi \mathsf{and} \ \forall j \leqslant i : \pi[j..] \models \psi)$$

Derived path-operators:

$$\mathsf{F}\,arphi\equiv\mathsf{true}\,\mathsf{U}\,arphi$$
 and $\mathsf{G}\,arphi\equiv\mathsf{false}\,\mathsf{R}\,arphi$

Equivalences:

$$\neg(\varphi \cup \psi) \equiv \neg\varphi \, \mathsf{R} \, \neg\psi \qquad \text{and} \qquad \neg(\varphi \, \mathsf{R} \, \psi) \equiv \neg\varphi \, \mathsf{U} \, \neg\psi$$

Comparing LTL, ACTL*, and CTL*

Theorem

- ACTL* strictly subsumes LTL
- CTL* strictly subsumes ACTL*

Simulation

ACTL* strictly subsumes LTL

• First we show that each LTL-formula φ can be translated into positive normal form (PNF), where LTL-formula in PNF has following shape:

$$\varphi ::= X \varphi \mid \varphi \cup \varphi \mid \varphi \wedge \varphi \mid \varphi \wedge \varphi \mid a \mid \neg a$$

$$\neg \neg \varphi \quad \rightsquigarrow \quad \varphi$$

$$\neg X \varphi \quad \rightsquigarrow \quad X \neg \varphi$$

$$\neg (\varphi \cup \psi) \quad \rightsquigarrow \quad \neg \varphi \wedge \nabla \psi$$

$$\neg (\varphi \wedge \psi) \quad \rightsquigarrow \quad \neg \varphi \cup \neg \psi$$

$$\neg (\varphi \wedge \psi) \quad \rightsquigarrow \quad \neg \varphi \vee \neg \psi$$

$$\neg (\varphi \vee \psi) \quad \rightsquigarrow \quad \neg \varphi \wedge \neg \psi$$

Hence, for LTL-formula φ obtain equivalent ψ in PNF. Then φ is equivalent to the ACTL*-formula A ψ . Thus, ACTL* subsumes LTL.

CTL* strictly subsumes ACTL*

 Obviously, CTL* subsumes ACTL* as release can be expressed using negation and until:

$$\varphi R \psi \equiv \neg \neg (\varphi R \psi) \equiv \neg (\neg \varphi U \neg \psi)$$

• Similar to the previous results between \sim and CTL* one can show that for all ACTL* formulas Φ :

$$TS_1 \leq TS_2$$
 implies $TS_1 \models \Phi$ if $TS_2 \models \Phi$

Hence,

$$\equiv_{CTL^*} = \sim \subset \simeq \subseteq \equiv_{ACTL^*}$$

shows that there must be CTL*-formulas which cannot be expressed in ACTL*, i.e., CTL* strictly subsumes ACTL*.

RT (ICS @ UIBK) week 4 49/53

JO N NESS

Simulation

ECTL*

Results so far:

• ACTL*: Stronger logic than LTL, model-checking via TS^f:

$$TS \models \Phi \quad \Leftarrow \quad TS^f \models \Phi$$

• ECTL*: Logic, model-checking via TS_f:

$$TS \models \Phi \quad \Leftarrow \quad TS_f \models \Phi$$

ECTL*-state-formulas:

$$\Phi ::= a \mid \neg a \mid \Phi \lor \Phi \mid \Phi \land \Phi \mid \mathsf{E} \varphi$$

ECTL*-path-formulas:

$$\varphi ::= \mathsf{X} \, arphi \, | \, arphi \, \mathsf{U} \, arphi \, | \, arphi \, \mathsf{R} \, arphi \, | \, arphi \, ee \, arphi \, | \, arphi \, \wedge \, arphi \, | \, oldsymbol{\Phi}$$

Simulation Summary

 Abstractions do not often lead to bisimulations, but always result in simulations:

$$TS \preceq TS^f$$
 and $TS_f \succeq TS$

 ACTL* is between LTL and CTL* and can be checked for model-checking using abstractions (over-approximations)

$$TS_1 \preceq TS_2$$
 implies $TS_1 \models \Phi$ if $TS_2 \models \Phi$

 ECTL* is sublogic of CTL* and can be checked for model-checking using abstractions (under-approximations)

$$TS_1 \succeq TS_2$$
 implies $TS_1 \models \Phi$ if $TS_2 \models \Phi$

- Reversing the directions yields methods to refute formulas
- Not shown:
 - ullet Computing the quotient of \simeq in analogy to S/\sim
 - How to obtain initial abstractions, abstraction refinement

RT (ICS @ UIBK) week 4 51/53

1/2/1/

Summary

- Aim: Try to solve the state-space explosion problem
- Bisimular systems satisfy the same CTL*-formulas
- Quotient S/\sim can efficiently be determined by partition-refinement
- If quotient is too large, one can further reduce the system-size by abstractions (over-approximation TS^f and under-approximation TS_f) \Rightarrow obtain simulation only
- For simulations LTL and (A/E)CTL* can be used, but neither CTL nor CTL*
- Challenge: Find good abstractions