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Model Checking Overview

Formalizing Modeling

property
specification
(LTL, CTL, ...

system model
(transition
system)

)

Model Checking

as ¢
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Ways to Solve the State Space Explosion Problem

Let TS = (S, —,/, AP, L) be transition system
Abstraction: f: S — S such that |S| < |S|, obtain TS
Then perform model checking on abstract system: TS = ©?

Questions:
o If TS = ¢, what about TS |= ¢?

e If TS |~ ¢, what about TS [~ ¢
e How to obtain f?

Some answers:
e If TSis a bisimulation of TS then TS Epiff TSE @ (CTL*)
e If TSis a simulation of TS then TS = ¢ implies TS = ¢ (ACTL¥)
e If TSis a simulation of TS then TS = ¢ implies TS = ¢ (ECTL")
e Computation of f such that TS is smallest bisimular system to TS
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Abstraction
Let TS=(S,—,/,AP,L) and S be a set of (abstract) states

Definition (Abstraction Function)

A function f : S — S is an abstraction function iff

f(s) = f(s') implies L(s) = L(s")

Definition (Abstracted Transition System)

For every abstraction function f, define the over-approximation
TS" = (S, =, 1T, AP, L") where Lf(f(s)) = L(s), I = {f(s) | s € I}, and
—F is smallest relation such that
o s — s implies f(s) =T f(s')
The under-approximation is TSy = (§, — ¢, l¢, AP, L¢) where Lf = LT,
lr = If, and — is largest relation such that

s

o f(s) —fs implies s — s’ for some s’ such that f(s')

REECNER) week 4 7/53

Example
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Different Kinds of Abstractions

e Variable abstraction: only store subset of all variables
e.g., state (x, y, loc) ~~ state (x, loc)

e Data abstraction: concrete domain ~~ abstract (smaller) domain
e.g., IN ~~ {even, odd} or IN ~ {pos, 0, neg}

e Predicate abstraction: state ~» valuation of the predicates
e.g., state (x,y, loc) ~» state (x > 0,x > y, loc = crit)

SECNER) week 4 YER

Example: Bakery algorithm

STEENER) week 4
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Bakery Algorithm: Transition System

ciLh2
X1 = 1
X = 0
C1n2
X1 =
X = 0
C1n2
X1 = 3

X2=0

Bakery Algorithm: Abstraction
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Abstraction Summary

Abstraction function f : S — S for AP such that

f(s) = f(s") implies L(s) = L(s")

From large (possibly infinite) system TS obtain
small (possibly finite) abstract system TS or TS¢

Check TS' |= ¢ or TSf |= ¢ instead of TS = ¢
Open question: relation between TS' = ¢, TSf |= ¢, and TS |= ¢
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Bisimulation Between Two Transition Systems

Let TS; = (S;,—, i, AP, L;) be two transition systems.

Definition
A relation R C 51 x Sy is a bisimulation relation iff

1. forallse€ l; exists t € I, : sRt and
for all t € I, exists s € 1 : sRt and
2. for all sRt it holds:
o Li(s) = La(t)
o if s —; s then t —5 t’ where s'Rt’
o if t —5 t' then s —1 s’ where s'Rt’
TS1 and TS, are bisimilar (TS; ~ TSy) iff there is a bisimulation relation
R for T51 and TSQ

RT (ICS @ UIBK) week 4 15/53
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Example
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Properties of Bisimulations

Lemma
~ is an equivalence relation (~ is reflexive, symmetric, transitive)

Lemma (Path Bisimulation)

Let R be a bisimulation of TS and TS, let syRty.
Then for each path
5051583... OfTSl

there is a bisimilar path, i.e., a path
totytrtz... of TSy

such that for all i: s;Rt;

Corollary (LTL-Equivalence of Bisimilar Systems)
If TS; ~ TS, then TSy = ¢ iff TSy = ¢ for all LTL-formulas ¢

SEECNER) week 4 17/53
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Bisimulation of States

e Up to now: Bisimulation between two transition systems
e Upcoming: Bisimulation between states of same system

= Minimize number of states

Definition (Bisimilar States)

Let TS = (S, —,/, AP, L) be a transition system.
R C S x S is a bisimulation for TS such that for all sRt:

o L(s)=L(t)
o if s — s’ then t — t’ where s'Rt/

o ift — t' then s — s’ where s'Rt’

States s and t are bisimilar for TS (s ~7s t) iff
there exists bisimulation R for TS with sRt.
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Properties of ~ 75
Let TS=(S,—, /1, AP, L) be a transition system.
Lemma

e ~ 75 is an equivalence relation on S
e ~ s Is a bisimulation for TS

e ~ 75 is the largest bisimulation for TS
e 51 ~15 5 iff (S,—,{s1},AP,L) ~ (S§,—,{s2}, AP, L)

Consequence: Deciding TSg ~ TS; via ~ 75

Corollary (Check of bisimilarity of transition systems)
Let TS; = (Si,—i, li, AP, L;) with So NSy = &. Then TSy ~ TSy iff

for all s; € I; there is s;_; € l1_; such that s; ~15 s1_;

where TS = (50 USi,—oU—1,9,AP, Ly U Ll)
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Proof of Lemma
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Short Reminder: CTL*

A state-formula ® holds in state s (written s = ®) iff

skEa iff ae L(s)

sE-® iff sp=®

sEOAV iff sE®ands =V

sEEp iff 7 = ¢ for some path 7 that starts in s

A path-formula ¢ holds for path 7 (written 7 = ) iff

T EXp iff 7[1..] = ¢

TEeUy iff(An>0.7[n.] Evand (VO i< n.n[i] E p))
TEeANY iffTrE@and T EY

/RS D) iff T = ¢

TE® iff 7[0] = ¢

Derived operators: A,F,G,V,...

RT (ICS @ UIBK) week 4 21/53
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Bisimulation and CTL*

Let TS=(S,—,/,AP,L). Define =cr;- €S x S as

s =cr1+ t iff (s = @ iff t = ) for all CTL*-state-formulas ¢

Similar definition for =¢7;

Theorem

=CTL — =CTL*x = ~TS

= Bisimilar systems satisfy the same CTL*-formulas
=- Non-bisimilar systems can be distinguished by a CTL-formula

RT (ICS @ UIBK) week 4
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Proof Continued
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Quotient System

Since ~ 75 is equivalence relation, we can write [s].,c as the equivalence
class to which s belongs ([s]~, = {t|s ~7s t}).
Definition (Quotient of a Transition System)
Let TS=(S,—,/,AP,L). The quotient system TS/~rs
(or TS/~ for short) is defined as (S, —', I’ AP, L'):
o S'=5/~1s={[s]~rs | s €S}
e whenever s — t then [s]~ . = [t]~rs
o I'=1I/~rs={[sl~rs [ s €1}
* L([slrs) = L(s)

Theorem
TS~ (TS/ ~)

ECNER) week 4 25/53
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Examples

e Bakery-Algorithm: TS = TS/~
(However, often TS is not a bisimulation)

e Vending machines: TS/~ = T51, s3 = [to]vrs, = [t3]~rs, = {t2, t3}
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Obtaining Quotients

If one can compute ~ 15 then one can easily
e minimize TS to quotient system TS/~
e check whether TSy ~ TS

Problem: How to obtain ~¢?

e Naive algorithm:
~TS =D
forall RC S x S do
if R is bisimulation for TS then ~75: = ~7sUR

Naive algorithm is exponential in |S| = not applicable

e Partition-Refinement-Algorithm, complexity: O(|S| - (JAP| + |—]))
e (Improved PR-Algorithm, complexity: O(|S| - |AP| + log|S| - |—]|))

RT (ICS @ UIBK) week 4 27/53
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|dea of a Partition Refinement Algorithm

e Work with partitions 1 = {B;,...,B,} of S
(UB;IS, B,-ﬂBj:@fori#j, B,‘#@)

e Partition [ contains candidates for equivalence classes

e If 1 is to coarse since some B contains obviously non-equivalent
states s and t then refine 1 and split B into smaller parts By and B,
such that s € By and t € B>

= Refine initial I'T until no further splitting is required

e Final value of N = {(;,..., C} contains real equivalence classes C;
of ~7s

= s ~7g tiff s, t are contained in same C;

RT (ICS @ UIBK) week 4 28/53

Partition Refinement Algorithm
[ :=Tap // partitioning of S due to labeling with AP
repeat

Mog =TI

for all C €11,y do

[ := refine(IN, C)

until T =T,y
return [1 // result: S/~7s

function refine(, C) // divide partitions due to transitions to C
return | g refine(B, C)

function refine(B, C)
return {{se€ B|s—t,te C},{s€B|nos—twithte (C}}\o

Map={{s|L(s)=A} | AC AP} \ O

RT (ICS @ UIBK) week 4 29/53
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Example

ECNER) week 4 EER

Properties of refine

Definition
Partition 1 is finer than M’ (N’ is coarser than M) iff

for all B € N there exists C € I’ such that B C C

Key lemmas:
Lemma (Coarsest Partition)
S /~Ts is coarsest partition I1 such that

e [1 is finer than Myp
o refine(lN, C) =T1 for all C €Tl

Lemma (Properties of refine)
If 11,1 are coarser than S/~1s then
o refine(, C) is finer than Tl
o refine(M, C) is coarser than S/~1s for all C € TV

SEECNER) week 4 31/53
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Proof of Coarsest-Partition Lemma
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Properties of the Algorithm

Theorem

e The algorithm terminates
o The complexity is O(|S| - (|JAP| + |—|))

o The result is the set of equivalence classes of ~ts, i.e., S/~Ts
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Proof
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Bisimulation Summary

TSy ~ TS, iff for all CTL*-formulas ®: TS; = ® < TS, &= ¢

~ = =CTL

Smallest bisimilar system to TS: TS/~7s= TS/~
~Ts can be used to decide TS; ~ TS,

~Ts can be computed by partitioning algorithm

RT (ICS @ UIBK) week 4 35/53
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A Problem

Current approach:
e Given TS, compute TS/~1s and then check formula
o Often, TS/~s is still too large
e Solution: Use abstraction function f such that TS'(TSf) < TS/~
e Problem: for these f, TS" « TS and TS 4 TS
= There are CTL*-formulas ® and V such that
TS Ed4A TSE=d and TSSEV A TSEV

= Need for another connection between transition systems

RT (ICS @ UIBK) week 4 37/53

Simulation Between Two Transition Systems

Let TS; = (S;,—, i, AP, L;) be two transition systems.

Definition
A relation R C 57 x Sy is a simulation relation iff
1. forallse€ | exists t € I, : sRt and
2. for all sRt it holds:
o Li(s) = Lof(t)
e if s—1 s then t —» t/ where s’'Rt’
TSy is simulated by TSy (TS1 < TS,) iff there is a simulation relation R

for TS; and TS
Note that unlike ~, < is no equivalence relation

RT (ICS @ UIBK) week 4 38/53
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beer sprite beer sprite

Previous results: TSy ~ TSy 4 TS3

ECNER) week 4 39/53

Lemma (Path Simulation)

Let R be a simulation of TSy and TS5, let syRty.
Then for each path
S0S15253... of TSy

there is a similar path, i.e., a path
tot1trtz... of TS

such that for all i: s;Rt;

Corollary (LTL and Similar Systems)

If TSy = TSy then TS = ¢ if TSy = ¢ for all LTL-formulas ¢
and TS1 £ ¢ implies TSy - ¢

Corollary (LTL and Similar Systems)

Define ~ = <N = (simulation equivalence). Then

~C =11

SEECNER) week 4 40/53
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Simulations and Abstractions

Theorem
Let TS be some transition system, and f be an abstraction function. Then

TS=< TS and TSs < T8S.

Corollary (Model Checking using Abstractions)
Let ¢ be arbitrary LTL-formula.

o If TS |= ¢ then TS|= ¢
o If TSt [~ @ then TS |~ ¢

RT (ICS @ UIBK) week 4 41/53

Proof of Theorem
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Properties of <

Lemma

e < is a pre-order (reflexive and transitive)

e ~ s an equivalence relation

.Ng:

Note that both ~ and ~ satisfy the path simulation lemma and are
equivalence relations. Moreover,

cTi=~C~2C =1

Questions:
o Is~=~7 Then ~ = =c7;+

e If not, then where is the difference?

REECNER) week 4 43/53

Example
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Strengthening the Logic

Knowledge:
o TS5; X TS, implies TS = p < TS, = ¢ for LTL-formulas ¢
o TS; = TS, implies TSy = p <= TS, = ¢ for LTL-formulas ¢
TS1 ~ TS, implies TS; = ¢ < TSy = ¢ for LTL-formulas ¢
TSy ~ TS, does not imply TS1 =& < TS, = @ for CTL-formulas &
TS< TS and TS= TS
Want:
e Stronger logic than LTL which allows model-checking via TS':

=
=

TSEd <« TS Eo
e Logic which allows model-checking via T5¢:

TS):(D <~ TSf |:¢
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ACTL* = CTL* with All-Quantifier Only

ACTL*-state-formulas:

br=a|-a|PVP|DPAP|AY

ACTL*-path-formulas:

pu=XploUp|[eRo|loVelphp|®
Semantics of release-operator R:
TEeRYiffVn:nn.]Evor (Fi:n[i.]Epand Vi< i:n[j..] E )
Derived path-operators:

Fo=trueUoyp and Gy =falseRp
Equivalences:

—(pUd)=—-9pR=9y  and  —(pRy)=-pU-y

RT (ICS @ UIBK) week 4 46/53
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Comparing LTL, ACTL*, and CTL*

Theorem

e ACTL* strictly subsumes LTL
o CTL* strictly subsumes ACTL*

EECNER) week 4 47/53

ACTL* strictly subsumes LTL

e First we show that each LTL-formula ¢ can be translated into positive
normal form (PNF), where LTL-formula in PNF has following shape:

p=Xp|lpUp|pRo|pVo|lpAp|al-a
B R

X ~» X=gp

(pUe) ~ —pR-9

(pRY) ~ =pU—1

(e AY) > V)
“(pVY) ~ —p A

Hence, for LTL-formula ¢ obtain equivalent ¢/ in PNF. Then ¢ is equivalent
to the ACTL*-formula At. Thus, ACTL* subsumes LTL.

J

J
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CTL* strictly subsumes ACTL*

e Obviously, CTL* subsumes ACTL* as release can be expressed using
negation and until:

Ry =—-=(pRep) = ~(—pU—1)

e Similar to the previous results between ~ and CTL* one can show
that for all ACTL* formulas :

TS1 2 TS implies TS; =@ if TS, =@
Hence,
=cTr =~ C~C =AcTLH

shows that there must be CTL*-formulas which cannot be expressed
in ACTL*, i.e., CTL* strictly subsumes ACTL*.
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ECLS

Results so far:
e ACTL*: Stronger logic than LTL, model-checking via TS

TSEd <« TS Eo

e ECTL*: Logic, model-checking via T5¢:
TSE® <« TS5EF¢
ECTL*-state-formulas:
br=a|-a|dPVP|DAP|Ep
ECTL*-path-formulas:

pr=Xp|lpUp|oRp|loVe|lpAp|®

RT (ICS @ UIBK) week 4 50,53
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Simulation Summary

e Abstractions do not often lead to bisimulations, but always result in
simulations:
TS< TS and TS = TS

o ACTL* is between LTL and CTL* and can be checked for
model-checking using abstractions (over-approximations)

TS1 <X TS, implies TS; |: dif TS, |: )

e ECTL" is sublogic of CTL* and can be checked for model-checking
using abstractions (under-approximations)

TS1 = TS, implies TS IZ dif TS, ': ]

e Reversing the directions yields methods to refute formulas
e Not shown:

e Computing the quotient of ~ in analogy to S/~
e How to obtain initial abstractions, abstraction refinement

EERER) week 4 51/53

Summary

e Aim: Try to solve the state-space explosion problem
e Bisimular systems satisfy the same CTL*-formulas
e Quotient S/~ can efficiently be determined by partition-refinement

e If quotient is too large, one can further reduce the system-size by
abstractions (over-approximation TS" and under-approximation T5f)
=> obtain simulation only

e For simulations LTL and (A/E)CTL* can be used,
but neither CTL nor CTL*

e Challenge: Find good abstractions
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