
Model Checking

René Thiemann

Institute of Computer Science

University of Innsbruck

SS 2008

RT (ICS @ UIBK) week 4 1/53

Outline

Motivation

Abstraction

Bisimulation
Bisimulation of Transition Systems
Bisimulation of States
Bisimulation and Temporal Logics
Quotient Systems

Simulation

Summary

RT (ICS @ UIBK) week 4 2/53

Motivation

Model Checking Overview

requirements

Formalizing

property
specification

(LTL, CTL, . . .)

Model Checking

system

Modeling

system model
(transition

system)

satisfied

insufficient
memory

violated +
counterexample

RT (ICS @ UIBK) week 4 4/53

Motivation

Ways to Solve the State Space Explosion Problem

• Let TS = (S ,→, I ,AP, L) be transition system

• Abstraction: f : S → Ŝ such that |Ŝ | � |S |, obtain T̂S

• Then perform model checking on abstract system: T̂S |= ϕ?

• Questions:
• If T̂S |= ϕ, what about TS |= ϕ?

• If T̂S 6|= ϕ, what about TS 6|= ϕ
• How to obtain f ?

• Some answers:
• If T̂S is a bisimulation of TS then T̂S |= ϕ iff TS |= ϕ (CTL∗)

• If T̂S is a simulation of TS then T̂S |= ϕ implies TS |= ϕ (ACTL∗)

• If TS is a simulation of T̂S then T̂S |= ϕ implies TS |= ϕ (ECTL∗)

• Computation of f such that T̂S is smallest bisimular system to TS

RT (ICS @ UIBK) week 4 5/53

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss08/mc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Abstraction

Abstraction
Let TS = (S ,→, I ,AP, L) and Ŝ be a set of (abstract) states

Definition (Abstraction Function)

A function f : S → Ŝ is an abstraction function iff

f (s) = f (s ′) implies L(s) = L(s ′)

Definition (Abstracted Transition System)

For every abstraction function f , define the over-approximation
TSf = (Ŝ ,→f , I f ,AP, Lf) where Lf (f (s)) = L(s), I f = {f (s) | s ∈ I}, and
→f is smallest relation such that

• s → s ′ implies f (s)→f f (s ′)

The under-approximation is TSf = (Ŝ ,→f , If ,AP, Lf) where Lf = Lf ,
If = I f , and →f is largest relation such that

• f (s)→f ŝ implies s → s ′ for some s ′ such that f (s ′) = ŝ

RT (ICS @ UIBK) week 4 7/53

Abstraction

Example

RT (ICS @ UIBK) week 4 8/53

Abstraction

Different Kinds of Abstractions

• Variable abstraction: only store subset of all variables
e.g., state (x , y , loc) state (x , loc)

• Data abstraction: concrete domain abstract (smaller) domain
e.g., IN {even, odd} or IN {pos, 0, neg}

• Predicate abstraction: state valuation of the predicates
e.g., state (x , y , loc) state (x > 0, x > y , loc = crit)

RT (ICS @ UIBK) week 4 9/53

Abstraction

Example: Bakery algorithm

RT (ICS @ UIBK) week 4 10/53

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Abstraction

Bakery Algorithm: Transition System

n1n2

x1 = 0
x2 = 0

n1w2

x1 = 0
x2 = 1

w1n2

x1 = 1
x2 = 0

w1w2

x1 = 2
x2 = 1

w1w2

x1 = 1
x2 = 2

c1n2

x1 = 2
x2 = 0

w1n2

x1 = 2
x2 = 0

w1w2

x1 = 2
x2 = 3

w1c2

x1 = 3
x2 = 2

w1n2

x1 = 3
x2 = 0

c1n2

x1 = 3
x2 = 0

c1n2

x1 = 1
x2 = 0

c1w2

x1 = 1
x2 = 2

w1c2

x1 = 2
x2 = 1

n1c2

x1 = 0
x2 = 2

n1c2

x1 = 0
x2 = 1

n1w2

x1 = 0
x2 = 2

w1w2

x1 = 3
x2 = 2

n1c2

x1 = 0
x2 = 3

c1w2

x1 = 2
x2 = 3

n1w2

x1 = 0
x2 = 3

RT (ICS @ UIBK) week 4 11/53

Abstraction

Bakery Algorithm: Abstraction

RT (ICS @ UIBK) week 4 12/53

Abstraction

Abstraction Summary

• Abstraction function f : S → Ŝ for AP such that

f (s) = f (s ′) implies L(s) = L(s ′)

• From large (possibly infinite) system TS obtain
small (possibly finite) abstract system TSf or TSf

• Check TSf |= ϕ or TSf |= ϕ instead of TS |= ϕ

• Open question: relation between TSf |= ϕ, TSf |= ϕ, and TS |= ϕ

RT (ICS @ UIBK) week 4 13/53

Bisimulation Bisimulation of Transition Systems

Bisimulation Between Two Transition Systems

Let TSi = (Si ,→i , Ii ,AP, Li) be two transition systems.

Definition
A relation R ⊆ S1 × S2 is a bisimulation relation iff

1. for all s ∈ I1 exists t ∈ I2 : sRt and
for all t ∈ I2 exists s ∈ I1 : sRt and

2. for all sRt it holds:
• L1(s) = L2(t)
• if s →1 s ′ then t →2 t ′ where s ′Rt ′

• if t →2 t ′ then s →1 s ′ where s ′Rt ′

TS1 and TS2 are bisimilar (TS1 ∼ TS2) iff there is a bisimulation relation
R for TS1 and TS2

RT (ICS @ UIBK) week 4 15/53

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Bisimulation Bisimulation of Transition Systems

Example

RT (ICS @ UIBK) week 4 16/53

Bisimulation Bisimulation of Transition Systems

Properties of Bisimulations

Lemma
∼ is an equivalence relation (∼ is reflexive, symmetric, transitive)

Lemma (Path Bisimulation)

Let R be a bisimulation of TS1 and TS2, let s0Rt0.
Then for each path

s0 s1 s2 s3 . . . of TS1

there is a bisimilar path, i.e., a path

t0 t1 t2 t3 . . . of TS2

such that for all i : siRti

Corollary (LTL-Equivalence of Bisimilar Systems)

If TS1 ∼ TS2 then TS1 |= ϕ iff TS2 |= ϕ for all LTL-formulas ϕ

RT (ICS @ UIBK) week 4 17/53

Bisimulation Bisimulation of States

Bisimulation of States

• Up to now: Bisimulation between two transition systems

• Upcoming: Bisimulation between states of same system

⇒ Minimize number of states

Definition (Bisimilar States)

Let TS = (S ,→, I ,AP, L) be a transition system.
R ⊆ S × S is a bisimulation for TS such that for all sRt:

• L(s) = L(t)

• if s → s ′ then t → t ′ where s ′Rt ′

• if t → t ′ then s → s ′ where s ′Rt ′

States s and t are bisimilar for TS (s ∼TS t) iff
there exists bisimulation R for TS with sRt.

RT (ICS @ UIBK) week 4 18/53

Bisimulation Bisimulation of States

Properties of ∼TS

Let TS = (S ,→, I ,AP, L) be a transition system.

Lemma

• ∼TS is an equivalence relation on S

• ∼TS is a bisimulation for TS

• ∼TS is the largest bisimulation for TS

• s1 ∼TS s2 iff (S ,→, {s1},AP, L) ∼ (S ,→, {s2},AP, L)

Consequence: Deciding TS0 ∼ TS1 via ∼TS

Corollary (Check of bisimilarity of transition systems)

Let TSi = (Si ,→i , Ii ,AP, Li) with S0 ∩ S1 = ∅. Then TS0 ∼ TS1 iff

for all si ∈ Ii there is s1−i ∈ I1−i such that si ∼TS s1−i

where TS = (S0 ∪ S1,→0 ∪ →1,∅,AP, L0 ∪ L1)

RT (ICS @ UIBK) week 4 19/53

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Bisimulation Bisimulation of States

Proof of Lemma

RT (ICS @ UIBK) week 4 20/53

Bisimulation Bisimulation and Temporal Logics

Short Reminder: CTL∗

A state-formula Φ holds in state s (written s |= Φ) iff

s |= a iff a ∈ L(s)

s |= ¬Φ iff s 6|= Φ

s |= Φ ∧Ψ iff s |= Φ and s |= Ψ

s |= Eϕ iff π |= ϕ for some path π that starts in s

A path-formula ϕ holds for path π (written π |= ϕ) iff

π |= Xϕ iff π[1..] |= ϕ

π |= ϕUψ iff (∃ n > 0. π[n..] |= ψ and (∀ 0 6 i < n. π[i ..] |= ϕ))

π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ

π |= ¬ϕ iff π 6|= ϕ

π |= Φ iff π[0] |= Φ

Derived operators: A ,F ,G ,∨, . . .
RT (ICS @ UIBK) week 4 21/53

Bisimulation Bisimulation and Temporal Logics

Bisimulation and CTL∗

Let TS = (S ,→, I ,AP, L). Define ≡CTL∗ ⊆ S × S as

s ≡CTL∗ t iff (s |= Φ iff t |= Φ) for all CTL∗-state-formulas Φ

Similar definition for ≡CTL

Theorem

≡CTL = ≡CTL∗ = ∼TS

⇒ Bisimilar systems satisfy the same CTL∗-formulas

⇒ Non-bisimilar systems can be distinguished by a CTL-formula

RT (ICS @ UIBK) week 4 22/53

Bisimulation Bisimulation and Temporal Logics

Proof

RT (ICS @ UIBK) week 4 23/53

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Bisimulation Bisimulation and Temporal Logics

Proof Continued

RT (ICS @ UIBK) week 4 24/53

Bisimulation Quotient Systems

Quotient System

Since ∼TS is equivalence relation, we can write [s]∼TS
as the equivalence

class to which s belongs ([s]∼TS
= {t | s ∼TS t}).

Definition (Quotient of a Transition System)

Let TS = (S ,→, I ,AP, L). The quotient system TS/∼TS

(or TS/∼ for short) is defined as (S ′,→′, I ′,AP, L′):

• S ′ = S/∼TS = {[s]∼TS
| s ∈ S}

• whenever s → t then [s]∼TS
→′ [t]∼TS

• I ′ = I/∼TS = {[s]∼TS
| s ∈ I}

• L′([s]∼TS
) = L(s)

Theorem
TS ∼ (TS/ ∼)

RT (ICS @ UIBK) week 4 25/53

Bisimulation Quotient Systems

Examples

• Bakery-Algorithm: TSf = TS/∼
(However, often TSf is not a bisimulation)

• Vending machines: TS2/∼ = TS1, s3 = [t2]∼TS2
= [t3]∼TS2

= {t2, t3}

RT (ICS @ UIBK) week 4 26/53

Bisimulation Quotient Systems

Obtaining Quotients

If one can compute ∼TS then one can easily

• minimize TS to quotient system TS/∼
• check whether TS0 ∼ TS1

Problem: How to obtain ∼TS?

• Naive algorithm:
∼TS := ∅
for all R ⊆ S × S do

if R is bisimulation for TS then ∼TS := ∼TS ∪ R

Naive algorithm is exponential in |S | ⇒ not applicable

• Partition-Refinement-Algorithm, complexity: O(|S | · (|AP|+ |→|))

• (Improved PR-Algorithm, complexity: O(|S | · |AP|+ log |S | · |→|))

RT (ICS @ UIBK) week 4 27/53

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Bisimulation Quotient Systems

Idea of a Partition Refinement Algorithm

• Work with partitions Π = {B1, . . . ,Bn} of S
(∪Bi = S , Bi ∩ Bj = ∅ for i 6= j , Bi 6= ∅)

• Partition Π contains candidates for equivalence classes

• If Π is to coarse since some B contains obviously non-equivalent
states s and t then refine Π and split B into smaller parts B1 and B2

such that s ∈ B1 and t ∈ B2

⇒ Refine initial Π until no further splitting is required

• Final value of Π = {C1, . . . ,Ck} contains real equivalence classes Ci

of ∼TS

⇒ s ∼TS t iff s, t are contained in same Ci

RT (ICS @ UIBK) week 4 28/53

Bisimulation Quotient Systems

Partition Refinement Algorithm
Π := ΠAP // partitioning of S due to labeling with AP

repeat

Πold := Π

for all C ∈ Πold do

Π := refine(Π,C)

until Π = Πold

return Π // result: S/∼TS

function refine(Π,C) // divide partitions due to transitions to C

return
⋃

B∈Π refine(B,C)

function refine(B,C)

return {{s ∈ B | s → t, t ∈ C}, {s ∈ B | no s → t with t ∈ C}} \∅

ΠAP = {{s | L(s) = A} | A ⊆ AP} \∅
RT (ICS @ UIBK) week 4 29/53

Bisimulation Quotient Systems

Example

RT (ICS @ UIBK) week 4 30/53

Bisimulation Quotient Systems

Properties of refine

Definition
Partition Π is finer than Π′ (Π′ is coarser than Π) iff

for all B ∈ Π there exists C ∈ Π′ such that B ⊆ C

Key lemmas:

Lemma (Coarsest Partition)

S/∼TS is coarsest partition Π such that

• Π is finer than ΠAP

• refine(Π,C) = Π for all C ∈ Π

Lemma (Properties of refine)

If Π,Π′ are coarser than S/∼TS then

• refine(Π,C) is finer than Π

• refine(Π,C) is coarser than S/∼TS for all C ∈ Π′

RT (ICS @ UIBK) week 4 31/53

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Bisimulation Quotient Systems

Proof of Coarsest-Partition Lemma

RT (ICS @ UIBK) week 4 32/53

Bisimulation Quotient Systems

Properties of the Algorithm

Theorem

• The algorithm terminates

• The complexity is O(|S | · (|AP|+ |→|))

• The result is the set of equivalence classes of ∼TS, i.e., S/∼TS

RT (ICS @ UIBK) week 4 33/53

Bisimulation Quotient Systems

Proof

RT (ICS @ UIBK) week 4 34/53

Bisimulation Quotient Systems

Bisimulation Summary

• TS1 ∼ TS2 iff for all CTL∗-formulas Φ: TS1 |= Φ⇔ TS2 |= Φ

∼ = ≡CTL∗

• Smallest bisimilar system to TS: TS/∼TS = TS/∼
• ∼TS can be used to decide TS1 ∼ TS2

• ∼TS can be computed by partitioning algorithm

RT (ICS @ UIBK) week 4 35/53

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulation

A Problem

Current approach:

• Given TS, compute TS/∼TS and then check formula

• Often, TS/∼TS is still too large

• Solution: Use abstraction function f such that TSf (TSf)� TS/∼TS

• Problem: for these f , TSf 6∼ TS and TSf 6∼ TS

⇒ There are CTL∗-formulas Φ and Ψ such that

TSf |= Φ 6⇔ TS |= Φ and TSf |= Ψ 6⇔ TS |= Ψ

⇒ Need for another connection between transition systems

RT (ICS @ UIBK) week 4 37/53

Simulation

Simulation Between Two Transition Systems

Let TSi = (Si ,→i , Ii ,AP, Li) be two transition systems.

Definition
A relation R ⊆ S1 × S2 is a simulation relation iff

1. for all s ∈ I1 exists t ∈ I2 : sRt and

2. for all sRt it holds:
• L1(s) = L2(t)
• if s →1 s ′ then t →2 t ′ where s ′Rt ′

TS1 is simulated by TS2 (TS1 � TS2) iff there is a simulation relation R
for TS1 and TS2

Note that unlike ∼, � is no equivalence relation

RT (ICS @ UIBK) week 4 38/53

Simulation

Example

s0pay
TS1

s1

s3

sprite

s2

beer

t0pay
TS2

t1

t4

sprite

t3

beer

t2

sprite

u0pay
TS3

u1 u2

u3

beer

u4

sprite

Previous results: TS1 ∼ TS2 6∼ TS3

RT (ICS @ UIBK) week 4 39/53

Simulation

Lemma (Path Simulation)

Let R be a simulation of TS1 and TS2, let s0Rt0.
Then for each path

s0 s1 s2 s3 . . . of TS1

there is a similar path, i.e., a path

t0 t1 t2 t3 . . . of TS2

such that for all i : siRti

Corollary (LTL and Similar Systems)

If TS1 � TS2 then TS1 |= ϕ if TS2 |= ϕ for all LTL-formulas ϕ
and TS1 6|= ϕ implies TS2 6|= ϕ

Corollary (LTL and Similar Systems)

Define ' = � ∩� (simulation equivalence). Then

' ⊆ ≡LTL

RT (ICS @ UIBK) week 4 40/53

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulation

Simulations and Abstractions

Theorem
Let TS be some transition system, and f be an abstraction function. Then

TS � TSf and TSf � TS.

Corollary (Model Checking using Abstractions)

Let ϕ be arbitrary LTL-formula.

• If TSf |= ϕ then TS |= ϕ

• If TSf 6|= ϕ then TS 6|= ϕ

RT (ICS @ UIBK) week 4 41/53

Simulation

Proof of Theorem

RT (ICS @ UIBK) week 4 42/53

Simulation

Properties of �

Lemma

• � is a pre-order (reflexive and transitive)

• ' is an equivalence relation

• ∼ ⊆ '

Note that both ∼ and ' satisfy the path simulation lemma and are
equivalence relations. Moreover,

≡CTL∗ = ∼ ⊆ ' ⊆ ≡LTL

Questions:

• Is ∼ = '? Then ' = ≡CTL∗

• If not, then where is the difference?

RT (ICS @ UIBK) week 4 43/53

Simulation

Example

RT (ICS @ UIBK) week 4 44/53

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulation

Strengthening the Logic

Knowledge:

• TS1 � TS2 implies TS1 |= ϕ⇐ TS2 |= ϕ for LTL-formulas ϕ

• TS1 � TS2 implies TS1 6|= ϕ⇐ TS2 6|= ϕ for LTL-formulas ϕ

• TS1 ' TS2 implies TS1 |= ϕ⇔ TS2 |= ϕ for LTL-formulas ϕ

• TS1 ' TS2 does not imply TS1 |= Φ⇔ TS2 |= Φ for CTL-formulas Φ

• TS � TSf and TS � TSf

Want:

• Stronger logic than LTL which allows model-checking via TSf :

TS |= Φ ⇐ TSf |= Φ

• Logic which allows model-checking via TSf :

TS |= Φ ⇐ TSf |= Φ

RT (ICS @ UIBK) week 4 45/53

Simulation

ACTL∗ = CTL∗ with All-Quantifier Only
ACTL∗-state-formulas:

Φ ::= a | ¬a | Φ ∨ Φ | Φ ∧ Φ | Aϕ

ACTL∗-path-formulas:

ϕ ::= Xϕ | ϕUϕ | ϕRϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Φ

Semantics of release-operator R :

π |= ϕRψ iff ∀ n : π[n..] |= ψ or (∃ i : π[i ..] |= ϕ and ∀ j 6 i : π[j ..] |= ψ)

Derived path-operators:

Fϕ ≡ true Uϕ and Gϕ ≡ false Rϕ

Equivalences:

¬(ϕUψ) ≡ ¬ϕR¬ψ and ¬(ϕRψ) ≡ ¬ϕU¬ψ

RT (ICS @ UIBK) week 4 46/53

Simulation

Comparing LTL, ACTL∗, and CTL∗

Theorem

• ACTL∗ strictly subsumes LTL

• CTL∗ strictly subsumes ACTL∗

RT (ICS @ UIBK) week 4 47/53

Simulation

ACTL∗ strictly subsumes LTL

• First we show that each LTL-formula ϕ can be translated into positive
normal form (PNF), where LTL-formula in PNF has following shape:

ϕ ::= Xϕ | ϕUϕ | ϕRϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | a | ¬a

¬¬ϕ ϕ

¬Xϕ X¬ϕ
¬(ϕUψ) ¬ϕR¬ψ
¬(ϕRψ) ¬ϕU¬ψ
¬(ϕ ∧ ψ) ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ¬ϕ ∧ ¬ψ

Hence, for LTL-formula ϕ obtain equivalent ψ in PNF. Then ϕ is equivalent
to the ACTL∗-formula Aψ. Thus, ACTL∗ subsumes LTL.

RT (ICS @ UIBK) week 4 48/53

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Simulation

CTL∗ strictly subsumes ACTL∗

• Obviously, CTL∗ subsumes ACTL∗ as release can be expressed using
negation and until:

ϕRψ ≡ ¬¬(ϕRψ) ≡ ¬(¬ϕU¬ψ)

• Similar to the previous results between ∼ and CTL∗ one can show
that for all ACTL∗ formulas Φ:

TS1 � TS2 implies TS1 |= Φ if TS2 |= Φ

Hence,
≡CTL∗ = ∼ ⊂ ' ⊆ ≡ACTL∗

shows that there must be CTL∗-formulas which cannot be expressed
in ACTL∗, i.e., CTL∗ strictly subsumes ACTL∗.

RT (ICS @ UIBK) week 4 49/53

Simulation

ECTL∗

Results so far:

• ACTL∗: Stronger logic than LTL, model-checking via TSf :

TS |= Φ ⇐ TSf |= Φ

• ECTL∗: Logic, model-checking via TSf :

TS |= Φ ⇐ TSf |= Φ

ECTL∗-state-formulas:

Φ ::= a | ¬a | Φ ∨ Φ | Φ ∧ Φ | Eϕ

ECTL∗-path-formulas:

ϕ ::= Xϕ | ϕUϕ | ϕRϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Φ

RT (ICS @ UIBK) week 4 50/53

Simulation

Simulation Summary

• Abstractions do not often lead to bisimulations, but always result in
simulations:

TS � TSf and TSf � TS

• ACTL∗ is between LTL and CTL∗ and can be checked for
model-checking using abstractions (over-approximations)

TS1 � TS2 implies TS1 |= Φ if TS2 |= Φ

• ECTL∗ is sublogic of CTL∗ and can be checked for model-checking
using abstractions (under-approximations)

TS1 � TS2 implies TS1 |= Φ if TS2 |= Φ

• Reversing the directions yields methods to refute formulas
• Not shown:

• Computing the quotient of ' in analogy to S/∼
• How to obtain initial abstractions, abstraction refinement

RT (ICS @ UIBK) week 4 51/53

Summary

Summary

• Aim: Try to solve the state-space explosion problem

• Bisimular systems satisfy the same CTL∗-formulas

• Quotient S/∼ can efficiently be determined by partition-refinement

• If quotient is too large, one can further reduce the system-size by
abstractions (over-approximation TSf and under-approximation TSf)
⇒ obtain simulation only

• For simulations LTL and (A/E)CTL∗ can be used,
but neither CTL nor CTL∗

• Challenge: Find good abstractions

RT (ICS @ UIBK) week 4 53/53

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Motivation
	Abstraction
	Bisimulation
	Bisimulation of Transition Systems
	Bisimulation of States
	Bisimulation and Temporal Logics
	Quotient Systems

	Simulation
	Summary

