Model Checking

René Thiemann

Institute of Computer Science
University of Innsbruck

SS 2008

```
Motivation
```


Model Checking Overview

Outline

- Motivation
- Abstraction
- Bisimulation

Bisimulation of Transition Systems

- Bisimulation of States
- Bisimulation and Temporal Logics
- Quotient Systems
- Simulation

Summary

Motivation
Ways to Solve the State Space Explosion Problem

- Let $T S=(S, \rightarrow, I, A P, L)$ be transition system
- Abstraction: $f: S \rightarrow \widehat{S}$ such that $|\widehat{S}| \ll|S|$, obtain $\widehat{T S}$
- Then perform model checking on abstract system: $\widehat{T S} \models \varphi$?
- Questions:
- If $\widehat{T S} \models \varphi$, what about $T S \models \varphi$?
- If TS $\not \vDash \varphi$, what about TS $\not \vDash \varphi$
- How to obtain f ?
- Some answers:
- If $\widehat{T S}$ is a bisimulation of $T S$ then $\widehat{T S} \models \varphi$ iff $T S \models \varphi$
- If $\widehat{T S}$ is a simulation of $T S$ then $\widehat{T S} \vDash \varphi$ implies $T S \vDash \varphi \quad$ (ACTL*)
- If $T S$ is a simulation of $\widehat{T S}$ then $\widehat{T S} \models \varphi$ implies $T S \models \varphi$
- Computation of f such that $\widehat{T S}$ is smallest bisimular system to $T S$

Abstraction

Let $T S=(S, \rightarrow, I, A P, L)$ and \widehat{S} be a set of (abstract) states
Definition (Abstraction Function)
A function $f: S \rightarrow \hat{S}$ is an abstraction function iff

$$
f(s)=f\left(s^{\prime}\right) \text { implies } L(s)=L\left(s^{\prime}\right)
$$

Definition (Abstracted Transition System)
For every abstraction function f, define the over-approximation
$T S^{f}=\left(\widehat{S}, \rightarrow^{f}, I^{f}, A P, L^{f}\right)$ where $L^{f}(f(s))=L(s), I^{f}=\{f(s) \mid s \in I\}$, and $\rightarrow{ }^{f}$ is smallest relation such that

- $s \rightarrow s^{\prime}$ implies $f(s) \rightarrow^{f} f\left(s^{\prime}\right)$

The under-approximation is $T S_{f}=\left(\widehat{S}, \rightarrow_{f}, I_{f}, A P, L_{f}\right)$ where $L_{f}=L^{f}$, $I_{f}=I^{f}$, and $\rightarrow f$ is largest relation such that

- $f(s) \rightarrow f$ s implies $s \rightarrow s^{\prime}$ for some s^{\prime} such that $f\left(s^{\prime}\right)=\widehat{s}$

Different Kinds of Abstractions

- Variable abstraction: only store subset of all variables e.g., state $(x, y, l o c) \rightsquigarrow$ state (x, loc)
- Data abstraction: concrete domain \rightsquigarrow abstract (smaller) domain e.g., $\mathbb{N} \rightsquigarrow\{$ even, odd $\}$ or $\mathbb{I N} \rightsquigarrow\{$ pos, 0, neg $\}$
- Predicate abstraction: state \rightsquigarrow valuation of the predicates
e.g., state $(x, y$, loc $) \rightsquigarrow$ state $(x>0, x>y$, loc $=c r i t)$

Bakery Algorithm: Transition System

Abstraction

Abstraction Summary

- Abstraction function $f: S \rightarrow \widehat{S}$ for AP such that

$$
f(s)=f\left(s^{\prime}\right) \text { implies } L(s)=L\left(s^{\prime}\right)
$$

- From large (possibly infinite) system TS obtain small (possibly finite) abstract system $T S^{f}$ or $T S_{f}$
- Check $T S^{f} \models \varphi$ or $T S_{f} \models \varphi$ instead of $T S \models \varphi$
- Open question: relation between $T S^{f} \models \varphi, T S_{f} \models \varphi$, and $T S \models \varphi$

Bisimulation Between Two Transition Systems

Let $T S_{i}=\left(S_{i}, \rightarrow_{i}, I_{i}, A P, L_{i}\right)$ be two transition systems.
Definition
A relation $R \subseteq S_{1} \times S_{2}$ is a bisimulation relation iff

1. for all $s \in I_{1}$ exists $t \in I_{2}: s R t$ and for all $t \in I_{2}$ exists $s \in I_{1}: s R t$ and
2. for all $s R t$ it holds:

- $L_{1}(s)=L_{2}(t)$
- if $s \rightarrow_{1} s^{\prime}$ then $t \rightarrow_{2} t^{\prime}$ where $s^{\prime} R t^{\prime}$
- if $t \rightarrow 2 t^{\prime}$ then $s \rightarrow_{1} s^{\prime}$ where $s^{\prime} R t^{\prime}$
$T S_{1}$ and $T S_{2}$ are bisimilar $\left(T S_{1} \sim T S_{2}\right)$ iff there is a bisimulation relation R for $T S_{1}$ and $T S_{2}$

Bisimulation of States

- Up to now: Bisimulation between two transition systems
- Upcoming: Bisimulation between states of same system
\Rightarrow Minimize number of states
Definition (Bisimilar States)
Let $T S=(S, \rightarrow, I, A P, L)$ be a transition system.
$R \subseteq S \times S$ is a bisimulation for $T S$ such that for all $s R t$:
- $L(s)=L(t)$
- if $s \rightarrow s^{\prime}$ then $t \rightarrow t^{\prime}$ where $s^{\prime} R t^{\prime}$
- if $t \rightarrow t^{\prime}$ then $s \rightarrow s^{\prime}$ where $s^{\prime} R t^{\prime}$

States s and t are bisimilar for $T S(s \sim T S t)$ iff there exists bisimulation R for $T S$ with $s R t$.

Properties of Bisimulations

Lemma
\sim is an equivalence relation (\sim is reflexive, symmetric, transitive)
Lemma (Path Bisimulation)
Let R be a bisimulation of $T S_{1}$ and $T S_{2}$, let $s_{0} R t_{0}$.
Then for each path

$$
s_{0} s_{1} s_{2} s_{3} \ldots \text { of } T s_{1}
$$

there is a bisimilar path, i.e., a path

$$
t_{0} t_{1} t_{2} t_{3} \ldots \text { of } T S_{2}
$$

such that for all i : $s_{i} R t_{i}$
Corollary (LTL-Equivalence of Bisimilar Systems)
If $T S_{1} \sim T S_{2}$ then $T S_{1} \models \varphi$ iff $T S_{2} \models \varphi$ for all $L T L$-formulas φ

Properties of $\sim_{T S}$

Let $T S=(S, \rightarrow, I, A P, L)$ be a transition system.
Lemma

- $\sim_{T S}$ is an equivalence relation on S
- $\sim_{T S}$ is a bisimulation for TS
- $\sim_{T S}$ is the largest bisimulation for $T S$
- $s_{1} \sim{ }_{T S} s_{2}$ iff $\left(S, \rightarrow,\left\{s_{1}\right\}, A P, L\right) \sim\left(S, \rightarrow,\left\{s_{2}\right\}, A P, L\right)$

Consequence: Deciding $T S_{0} \sim T S_{1}$ via $\sim_{T S}$
Corollary (Check of bisimilarity of transition systems)
Let $T S_{i}=\left(S_{i}, \rightarrow_{i}, I_{i}, A P, L_{i}\right)$ with $S_{0} \cap S_{1}=\varnothing$. Then $T S_{0} \sim T S_{1}$ iff
for all $s_{i} \in I_{i}$ there is $s_{1-i} \in I_{1-i}$ such that $s_{i} \sim T S s_{1-i}$
where $T S=\left(S_{0} \cup S_{1}, \rightarrow_{0} \cup \rightarrow_{1}, \varnothing, A P, L_{0} \cup L_{1}\right)$

Proof of Lemma

Bisimulation and CTL*

Let $T S=(S, \rightarrow, I, A P, L)$. Define $\equiv C T L^{*} \subseteq S \times S$ as
$s \equiv c T L^{*} t$ iff $(s \models \Phi$ iff $t \models \Phi$) for all CTL*-state-formulas Φ
Similar definition for $\equiv_{C T L}$
Theorem

$$
\equiv_{C T L}=\equiv_{C T L^{*}}=\sim_{T S}
$$

\Rightarrow Bisimilar systems satisfy the same CTL*-formulas
\Rightarrow Non-bisimilar systems can be distinguished by a CTL-formula

Examples

- Bakery-Algorithm: $T S^{f}=T S / \sim$ (However, often $T S^{f}$ is not a bisimulation)
- Vending machines: $T S_{2} / \sim=T S_{1}, s_{3}=\left[t_{2}\right]_{\sim T S_{2}}=\left[t_{3}\right]_{\sim T S_{2}}=\left\{t_{2}, t_{3}\right\}$

Idea of a Partition Refinement Algorithm

- Work with partitions $\Pi=\left\{B_{1}, \ldots, B_{n}\right\}$ of S $\left(\cup B_{i}=S, B_{i} \cap B_{j}=\varnothing\right.$ for $\left.i \neq j, B_{i} \neq \varnothing\right)$
- Partition Π contains candidates for equivalence classes
- If Π is to coarse since some B contains obviously non-equivalent states s and t then refine Π and split B into smaller parts B_{1} and B_{2} such that $s \in B_{1}$ and $t \in B_{2}$
\Rightarrow Refine initial Π until no further splitting is required
- Final value of $\Pi=\left\{C_{1}, \ldots, C_{k}\right\}$ contains real equivalence classes C_{i} of $\sim T S$
$\Rightarrow s \sim_{\text {TS }} t$ iff s, t are contained in same C_{i}

Example

Partition Refinement Algorithm
$\Pi:=\Pi_{A P} / /$ partitioning of S due to labeling with $A P$

repeat

$\Pi_{\text {old }}:=\Pi$
for all $C \in \Pi_{\text {old }}$ do
$\Pi:=\operatorname{refine}(\Pi, C)$
until $\Pi=\Pi_{\text {old }}$
return Π // result: S / \sim TS
function refine($\Pi, C)$ // divide partitions due to transitions to C
return $\bigcup_{B \in \Pi}$ refine (B, C)
function refine (B, C)
return $\{\{s \in B \mid s \rightarrow t, t \in C\},\{s \in B \mid$ no $s \rightarrow t$ with $t \in C\}\} \backslash \varnothing$
$\Pi_{A P}=\{\{s \mid L(s)=A\} \mid A \subseteq A P\} \backslash \varnothing$
RT (ICS © UIBK)

Properties of refine

Definition
Partition Π is finer than $\Pi^{\prime}\left(\Pi^{\prime}\right.$ is coarser than Π) iff
for all $B \in \Pi$ there exists $C \in \Pi^{\prime}$ such that $B \subseteq C$
Key lemmas:
Lemma (Coarsest Partition)
$S / \sim_{\text {TS }}$ is coarsest partition Π such that

- Π is finer than $\Pi_{A P}$
- $\operatorname{refine}(\Pi, C)=\Pi$ for all $C \in \Pi$

Lemma (Properties of refine)
If Π, Π^{\prime} are coarser than $S / \sim_{T S}$ then

- refine (Π, C) is finer than Π
- refine (Π, C) is coarser than $S / \sim_{T S}$ for all $C \in \Pi^{\prime}$

Theorem

- The algorithm terminates
- The complexity is $\mathcal{O}(|S| \cdot(|A P|+|\rightarrow|))$
- The result is the set of equivalence classes of $\sim_{T S}$, i.e., $S / \sim_{T S}$

Bisimulation Summary

- $T S_{1} \sim T S_{2}$ iff for all CTL*-formulas $\Phi: T S_{1} \models \Phi \Leftrightarrow T S_{2} \models \Phi$

$$
\sim \quad=\equiv C T L^{*}
$$

- Smallest bisimilar system to $T S: T S / \sim_{T S}=T S / \sim$
- $\sim_{T S}$ can be used to decide $T S_{1} \sim T S_{2}$
- \sim TS can be computed by partitioning algorithm

A Problem

Current approach:

- Given $T S$, compute $T S / \sim_{T S}$ and then check formula
- Often, $T S / \sim T S$ is still too large
- Solution: Use abstraction function f such that $T S^{f}\left(T S_{f}\right) \ll T S / \sim T S$
- Problem: for these $f, T S^{f} \nsim T S$ and $T S_{f} \nsim T S$
\Rightarrow There are CTL*-formulas Φ and Ψ such that

$$
T S^{f} \models \Phi \nLeftarrow T S \models \Phi \quad \text { and } \quad T S_{f} \models \psi \nLeftarrow T S \models \Psi
$$

\Rightarrow Need for another connection between transition systems

Example

Previous results: $T S_{1} \sim T S_{2} \nsim T S_{3}$

Simulation Between Two Transition Systems

Let $T S_{i}=\left(S_{i}, \rightarrow_{i}, I_{i}, A P, L_{i}\right)$ be two transition systems.
Definition
A relation $R \subseteq S_{1} \times S_{2}$ is a simulation relation iff

1. for all $s \in I_{1}$ exists $t \in I_{2}: s R t$ and
2. for all $s R t$ it holds:

- $L_{1}(s)=L_{2}(t)$
- if $s \rightarrow_{1} s^{\prime}$ then $t \rightarrow_{2} t^{\prime}$ where $s^{\prime} R t^{\prime}$
$T S_{1}$ is simulated by $T S_{2}\left(T S_{1} \preceq T S_{2}\right)$ iff there is a simulation relation R for $T S_{1}$ and $T S_{2}$
Note that unlike \sim, \preceq is no equivalence relation

Lemma (Path Simulation)
Let R be a simulation of $T S_{1}$ and $T S_{2}$, let $s_{0} R t_{0}$.
Then for each path

$$
s_{0} s_{1} s_{2} s_{3} \ldots \text { of } T s_{1}
$$

there is a similar path, i.e., a path

$$
t_{0} t_{1} t_{2} t_{3} \ldots \text { of } T S_{2}
$$

such that for all $i: s_{i} R t_{i}$
Corollary (LTL and Similar Systems)
If $T S_{1} \preceq T S_{2}$ then $T S_{1}=\varphi$ if $T S_{2}=\varphi$ for all LTL-formulas φ and $T S_{1} \not \vDash \varphi$ implies $T S_{2} \not \vDash \varphi$
Corollary (LTL and Similar Systems)
Define $\simeq=\preceq \cap \succeq$ (simulation equivalence). Then

$$
\simeq \subseteq \equiv \angle T L
$$

Theorem

Let TS be some transition system, and f be an abstraction function. Then

$$
T S \preceq T S^{f} \quad \text { and } \quad T S_{f} \preceq T S
$$

Corollary (Model Checking using Abstractions)
Let φ be arbitrary LTL-formula.

- If $T S^{f}=\varphi$ then $T S=\varphi$
- If $T S_{f} \not \vDash \varphi$ then $T S \not \vDash \varphi$
shluther
Properties of \preceq
Lemma
- \preceq is a pre-order (reflexive and transitive)
- \simeq is an equivalence relation
- $\sim \subseteq \simeq$

Note that both \sim and \simeq satisfy the path simulation lemma and are equivalence relations. Moreover,

$$
\equiv C T L^{*}=\sim \subseteq \simeq \subseteq \equiv \angle T L
$$

Questions:

- Is $\sim=\simeq$? Then $\simeq=\equiv$ CTL*
- If not, then where is the difference?

Simulatio

Strengthening the Logic

Knowledge

- $T S_{1} \preceq T S_{2}$ implies $T S_{1} \models \varphi \Leftarrow T S_{2} \vDash \varphi$ for LTL-formulas φ
- $T S_{1} \succeq T S_{2}$ implies $T S_{1} \not \vDash \varphi \Leftarrow T S_{2} \not \vDash \varphi$ for LTL-formulas φ
- $T S_{1} \simeq T S_{2}$ implies $T S_{1} \models \varphi \Leftrightarrow T S_{2} \models \varphi$ for LTL-formulas φ
- $T S_{1} \simeq T S_{2}$ does not imply $T S_{1} \models \Phi \Leftrightarrow T S_{2} \models \Phi$ for CTL-formulas Φ
- $T S \preceq T S^{f}$ and $T S \succeq T S_{f}$

Want:

- Stronger logic than LTL which allows model-checking via $T S^{f}$:

$$
T S \models \Phi \quad \Leftarrow \quad T S^{f} \models \Phi
$$

- Logic which allows model-checking via $T S_{f}$:

$$
T S \models \Phi \quad \Leftarrow \quad T S_{f} \models \Phi
$$

Comparing LTL, ACTL*, and CTL*

Theorem

- ACTL* strictly subsumes LTL
- CTL* strictly subsumes ACTL*

ACTL* $=$ CTL* with All-Quantifier Only
ACTL*-state-formulas:

$$
\Phi::=a|\neg a| \Phi \vee \Phi|\Phi \wedge \Phi| \mathrm{A} \varphi
$$

ACTL*-path-formulas:

$$
\varphi::=\mathrm{X} \varphi|\varphi \mathrm{U} \varphi| \varphi \mathrm{R} \varphi|\varphi \vee \varphi| \varphi \wedge \varphi \mid \Phi
$$

Semantics of release-operator R :
$\pi \models \varphi \mathrm{R} \psi$ iff $\forall n: \pi[n ..] \models \psi$ or $(\exists i: \pi[i ..] \models \varphi$ and $\forall j \leqslant i: \pi[j ..] \models \psi)$
Derived path-operators:

$$
\mathrm{F} \varphi \equiv \operatorname{true} \mathrm{U} \varphi \quad \text { and } \quad \mathrm{G} \varphi \equiv \text { false } \mathrm{R} \varphi
$$

Equivalences:

$$
\neg(\varphi \cup \psi) \equiv \neg \varphi \mathrm{R} \neg \psi \quad \text { and } \quad \neg(\varphi \mathrm{R} \psi) \equiv \neg \varphi \mathrm{U} \neg \psi
$$

ACTL* strictly subsumes LTL

- First we show that each LTL-formula φ can be translated into positive normal form (PNF), where LTL-formula in PNF has following shape:

$$
\begin{aligned}
& \varphi::=\mathrm{X} \varphi|\varphi \mathrm{U} \varphi| \varphi \mathrm{R} \varphi|\varphi \vee \varphi| \varphi \wedge \varphi|a| \neg a \\
& \neg \neg \varphi \rightsquigarrow \varphi \\
& \neg \mathrm{X} \varphi \rightsquigarrow \mathrm{X} \neg \varphi \\
& \neg(\varphi \mathrm{U} \psi) \rightsquigarrow \neg \varphi \mathrm{R} \neg \psi \\
& \neg(\varphi \mathrm{R} \psi) \rightsquigarrow \neg \varphi \mathrm{U} \neg \psi \\
& \neg(\varphi \wedge \psi) \rightsquigarrow \neg \varphi \vee \neg \psi \\
& \neg(\varphi \vee \psi) \rightsquigarrow \neg \varphi \wedge \neg \psi
\end{aligned}
$$

Hence, for LTL-formula φ obtain equivalent ψ in PNF. Then φ is equivalent to the ACTL*-formula A ψ. Thus, ACTL* subsumes LTL .

CTL* strictly subsumes ACTL*

- Obviously, CTL* subsumes ACTL* as release can be expressed using negation and until:

$$
\varphi \mathrm{R} \psi \equiv \neg \neg(\varphi \mathrm{R} \psi) \equiv \neg(\neg \varphi \mathrm{U} \neg \psi)
$$

- Similar to the previous results between \sim and CTL* one can show that for all ACTL* formulas Φ :

$$
T S_{1} \preceq T S_{2} \text { implies } T S_{1} \models \Phi \text { if } T S_{2} \models \Phi
$$

Hence,

$$
\equiv C T L^{*}=\sim \subset \simeq \subseteq \equiv_{A C T L^{*}}
$$

shows that there must be CTL*-formulas which cannot be expressed in ACTL*, i.e., CTL* strictly subsumes ACTL*.

Simulation Summary

- Abstractions do not often lead to bisimulations, but always result in simulations:

$$
T S \preceq T S^{f} \quad \text { and } \quad T S_{f} \succeq T S
$$

- ACTL* is between LTL and CTL* and can be checked for model-checking using abstractions (over-approximations)

$$
T S_{1} \preceq T S_{2} \text { implies } T S_{1} \models \Phi \text { if } T S_{2} \models \Phi
$$

- ECTL* is sublogic of CTL* and can be checked for model-checking using abstractions (under-approximations)

$$
T S_{1} \succeq T S_{2} \text { implies } T S_{1} \models \Phi \text { if } T S_{2} \models \Phi
$$

- Reversing the directions yields methods to refute formulas
- Not shown:
- Computing the quotient of \simeq in analogy to S / \sim
- How to obtain initial abstractions, abstraction refinement

ECTL*

Results so far:

- ACTL*: Stronger logic than LTL, model-checking via $T S^{f}$:

$$
T S \models \Phi \quad \Leftarrow \quad T S^{f} \models \Phi
$$

- ECTL*: Logic, model-checking via $T S_{f}$:

$$
T S \models \Phi \quad \Leftarrow \quad T S_{f} \models \Phi
$$

ECTL*-state-formulas:

$$
\Phi::=a|\neg a| \Phi \vee \Phi|\Phi \wedge \Phi| \mathrm{E} \varphi
$$

ECTL*-path-formulas:

$$
\varphi::=\mathrm{X} \varphi|\varphi \mathrm{U} \varphi| \varphi \mathrm{R} \varphi|\varphi \vee \varphi| \varphi \wedge \varphi \mid \Phi
$$

Summary

- Aim: Try to solve the state-space explosion problem
- Bisimular systems satisfy the same CTL*-formulas
- Quotient S / \sim can efficiently be determined by partition-refinement
- If quotient is too large, one can further reduce the system-size by abstractions (over-approximation $T S^{f}$ and under-approximation $T S_{f}$) \Rightarrow obtain simulation only
- For simulations LTL and (A/E)CTL* can be used, but neither CTL nor CTL*
- Challenge: Find good abstractions

