

Model Checking

René Thiemann

Institute of Computer Science

University of Innsbruck

SS 2008

week 4

Outline

- Motivation
- Abstraction

Bisimulation

- Bisimulation of Transition Systems
- Bisimulation of States
- Bisimulation and Temporal Logics
- Quotient Systems

Simulation

• Summary

RT (ICS @ UIBK)

Model Checking Overview

RT (ICS @ UIBK)

Ways to Solve the State Space Explosion Problem

week 4

- Let $TS = (S, \rightarrow, I, AP, L)$ be transition system
- Abstraction: $f: S \to \widehat{S}$ such that $|\widehat{S}| \ll |S|$, obtain \widehat{TS}
- Then perform model checking on abstract system: $\widehat{TS} \models \varphi$?
- Questions:
 - If $\widehat{TS} \models \varphi$, what about $TS \models \varphi$?
 - If $\widehat{TS} \not\models \varphi$, what about $TS \not\models \varphi$
 - How to obtain f?
- Some answers:

RT (ICS @ UIBK)

- If \widehat{TS} is a bisimulation of TS then $\widehat{TS} \models \varphi$ iff $TS \models \varphi$ (CTL^*)
- If \widehat{TS} is a simulation of TS then $\widehat{TS} \models \varphi$ implies $TS \models \varphi$ (ACTL*)
- If *TS* is a simulation of \widehat{TS} then $\widehat{TS} \models \varphi$ implies $TS \models \varphi$ (ECTL*)
- Computation of f such that \widehat{TS} is smallest bisimular system to TS

Abstraction

Abstraction

RT (ICS @ UIBK)

Let $TS = (S, \rightarrow, I, AP, L)$ and \widehat{S} be a set of (abstract) states

Definition (Abstraction Function)

A function $f: S \to \widehat{S}$ is an abstraction function iff

$$f(s) = f(s')$$
 implies $L(s) = L(s')$

Definition (Abstracted Transition System)

For every abstraction function f, define the over-approximation $TS^{f} = (\widehat{S}, \rightarrow^{f}, I^{f}, AP, L^{f})$ where $L^{f}(f(s)) = L(s), I^{f} = \{f(s) \mid s \in I\}$, and \rightarrow^{f} is smallest relation such that • $s \rightarrow s'$ implies $f(s) \rightarrow^{f} f(s')$

The under-approximation is $TS_f = (\hat{S}, \rightarrow_f, I_f, AP, L_f)$ where $L_f = L^f$, $I_f = I^f$, and \rightarrow_f is largest relation such that

• $f(s) \rightarrow_f \widehat{s}$ implies $s \rightarrow s'$ for some s' such that $f(s') = \widehat{s}$

Different Kinds of Abstractions

Example: Bakery algorithm

week 4

- Variable abstraction: only store subset of all variables
 e.g., state (x, y, loc) → state (x, loc)
- Data abstraction: concrete domain → abstract (smaller) domain e.g., N → {even, odd} or N → {pos, 0, neg}
- Predicate abstraction: state → valuation of the predicates
 e.g., state (x, y, loc) → state (x > 0, x > y, loc = crit)

RT (ICS @ UIBK)

7/53

Example

RT (ICS @ UIBK)

Bakery Algorithm: Transition System

Abstraction Summary

• Abstraction function $f: S \to \widehat{S}$ for AP such that

f(s) = f(s') implies L(s) = L(s')

- From large (possibly infinite) system TS obtain small (possibly finite) abstract system TS^f or TS_f
- Check $TS^f \models \varphi$ or $TS_f \models \varphi$ instead of $TS \models \varphi$
- Open question: relation between $TS^f \models \varphi$, $TS_f \models \varphi$, and $TS \models \varphi$

Bakery Algorithm: Abstraction

Bisimulation Between Two Transition Systems

Let $TS_i = (S_i, \rightarrow_i, I_i, AP, L_i)$ be two transition systems.

Definition

- A relation $R \subseteq S_1 \times S_2$ is a bisimulation relation iff
- 1. for all $s \in I_1$ exists $t \in I_2$: sRt and for all $t \in I_2$ exists $s \in I_1$: sRt and
- 2. for all *sRt* it holds:
 - $L_1(s) = L_2(t)$
 - if $s \rightarrow_1 s'$ then $t \rightarrow_2 t'$ where s'Rt'• if $t \rightarrow_2 t'$ then $s \rightarrow_1 s'$ where s'Rt'

 TS_1 and TS_2 are bisimilar $(TS_1 \sim TS_2)$ iff there is a bisimulation relation R for TS_1 and TS_2

Example

Bisimulation of Transition Systems

Properties of Bisimulations

Lemma

 \sim is an equivalence relation (\sim is reflexive, symmetric, transitive)

Lemma (Path Bisimulation)

Let R be a bisimulation of TS_1 and TS_2 , let s_0Rt_0 . Then for each path

 $s_0 s_1 s_2 s_3 \dots$ of TS_1

there is a bisimilar path, i.e., a path

 $t_0 t_1 t_2 t_3 \dots$ of TS_2

week 4

such that for all i: s_iRt_i

Corollary (LTL-Equivalence of Bisimilar Systems) If $TS_1 \sim TS_2$ then $TS_1 \models \varphi$ iff $TS_2 \models \varphi$ for all LTL-formulas φ

RT (ICS @ UIBK)

Bisimulation of

16/53

Bisimulation of States

• Up to now: Bisimulation between two transition systems

week 4

- Upcoming: Bisimulation between states of same system
- \Rightarrow Minimize number of states

Definition (Bisimilar States)

Let $TS = (S, \rightarrow, I, AP, L)$ be a transition system. $R \subseteq S \times S$ is a bisimulation for TS such that for all sRt:

- L(s) = L(t)
- if $s \rightarrow s'$ then $t \rightarrow t'$ where s'Rt'
- if $t \to t'$ then $s \to s'$ where s'Rt'

States s and t are bisimilar for $TS (s \sim_{TS} t)$ iff there exists bisimulation R for TS with sRt. Properties of \sim_{TS}

Let $TS = (S, \rightarrow, I, AP, L)$ be a transition system.

Lemma

RT (ICS @ UIBK)

RT (ICS @ UIBK)

- \sim_{TS} is an equivalence relation on S
- \sim_{TS} is a bisimulation for TS
- \sim_{TS} is the largest bisimulation for TS
- $s_1 \sim_{TS} s_2$ iff $(S, \rightarrow, \{s_1\}, AP, L) \sim (S, \rightarrow, \{s_2\}, AP, L)$

Consequence: Deciding $TS_0 \sim TS_1$ via \sim_{TS}

Corollary (Check of bisimilarity of transition systems) Let $TS_i = (S_i, \rightarrow_i, I_i, AP, L_i)$ with $S_0 \cap S_1 = \emptyset$. Then $TS_0 \sim TS_1$ iff

for all $s_i \in I_i$ there is $s_{1-i} \in I_{1-i}$ such that $s_i \sim_{TS} s_{1-i}$

week 4

where $TS = (S_0 \cup S_1, \rightarrow_0 \cup \rightarrow_1, \varnothing, AP, L_0 \cup L_1)$

A state-formula Φ holds in s $s \models a$ iff a $s \models \neg \Phi$ iff s $s \models \Phi \land \Psi$ iff s $s \models E \varphi$ iff π A path-formula φ holds for p $\pi \models X \varphi$ iff $\pi[1] \models$ $\pi \models \varphi U \psi$ iff $(\exists n \ge 0)$ $\pi \models \varphi \land \psi$ iff $\pi \models \varphi$ s		
$s \models \neg \Phi \text{iff } s$ $s \models \Phi \land \Psi \text{iff } s$ $s \models E \varphi \text{iff } \pi$ A path-formula φ holds for p $\pi \models X \varphi \text{iff } \pi[1] \models$ $\pi \models \varphi \cup \psi \text{iff } (\exists n \ge 0)$ $\pi \models \varphi \land \psi \text{iff } \pi \models \varphi$	Proof of Lemma	Short Reminder: CTL A state-formula Φ holds in s
$s \models \Phi \land \Psi \text{iff } s$ $s \models E \varphi \text{iff } \pi$ A path-formula φ holds for p $\pi \models X \varphi \text{iff } \pi[1] \models$ $\pi \models \varphi \cup \psi \text{iff } (\exists n \ge 0)$ $\pi \models \varphi \land \psi \text{iff } \pi \models \varphi$		s ⊨ a iff a
$s \models E\varphi \text{iff } \pi$ A path-formula φ holds for p $\pi \models X\varphi \text{iff } \pi[1] \models$ $\pi \models \varphi U\psi \text{iff } (\exists n \ge 0)$ $\pi \models \varphi \land \psi \text{iff } \pi \models \varphi$		$s \models \neg \Phi$ iff s
A path-formula φ holds for p $\pi \models X \varphi$ iff $\pi[1] \models$ $\pi \models \varphi \cup \psi$ iff $(\exists n \ge 0)$ $\pi \models \varphi \land \psi$ iff $\pi \models \varphi$		$s \models \Phi \land \Psi$ iff s
$\pi \models X \varphi \text{iff } \pi[1] \models \\ \pi \models \varphi \cup \psi \text{iff } (\exists n \ge 0) \\ \pi \models \varphi \land \psi \text{iff } \pi \models \varphi \end{cases}$		$s \models E \varphi$ iff π
$\pi \models \varphi \cup \psi \text{iff } (\exists n \ge 0)$ $\pi \models \varphi \land \psi \text{iff } \pi \models \varphi \Rightarrow$		A path-formula $arphi$ holds for (
$\pi \models \varphi \cup \psi \text{iff } (\exists n \ge 0)$ $\pi \models \varphi \land \psi \text{iff } \pi \models \varphi \Rightarrow$		$\pi \models X \varphi \qquad \text{iff } \pi[1] \models$
	SO-1673+SIGILI	$\pi \models \varphi U \psi \qquad \text{iff } (\exists n \ge 0)$
$\pi \models \neg \varphi \qquad \text{iff } \pi \not\models \varphi$	Second Land Contraction of the	$\pi\models arphi\wedge\psi ext{iff} \ \pi\modelsarphi \ ext{:}$
		$\pi\models\neg\varphi \text{iff } \pi\not\models\varphi$

*

state *s* (written $s \models \Phi$) iff

$s \models a$	iff $a \in L(s)$
$s \models \neg \Phi$	iff $s \not\models \Phi$
$s \models \Phi \land \Psi$	$iff \ \ s \models \Phi \ and \ \ s \models \Psi$
$s\models Earphi$	iff $\pi \models \varphi$ for some path π that starts in s

path π (written $\pi \models \varphi$) iff

Let $TS = (S, \rightarrow, I, AP, L)$. Define $\equiv_{CTL^*} \subseteq S \times S$ as

 $s \equiv_{CTL^*} t$ iff $(s \models \Phi \text{ iff } t \models \Phi)$ for all CTL^* -state-formulas Φ

week 4

Similar definition for \equiv_{CTL}

Bisimulation and CTL*

Theorem

RT (ICS @ UIBK)

RT (ICS @ UIBK)

 $\equiv_{CTL} = \equiv_{CTL^*} = \sim_{TS}$

week 4

- \Rightarrow Bisimilar systems satisfy the same CTL*-formulas
- \Rightarrow Non-bisimilar systems can be distinguished by a CTL-formula

22/53

RT (ICS @ UIBK)

Examples

Bisimulation and Temporal Logics

Proof Continued

Quotient System

Since \sim_{TS} is equivalence relation, we can write $[s]_{\sim_{TS}}$ as the equivalence class to which s belongs ($[s]_{\sim_{TS}} = \{t \mid s \sim_{TS} t\}$).

week 4

Definition (Quotient of a Transition System)

Let $TS = (S, \rightarrow, I, AP, L)$. The quotient system TS/\sim_{TS} (or TS/\sim for short) is defined as $(S', \rightarrow', I', AP, L')$:

- $S' = S/\sim_{TS} = \{[s]_{\sim_{TS}} \mid s \in S\}$
- whenever $s \to t$ then $[s]_{\sim_{TS}} \to' [t]_{\sim_{TS}}$

•
$$I' = I/\sim_{TS} = \{ [s]_{\sim_{TS}} \mid s \in I \}$$

Theorem $TS \sim (TS/\sim)$

RT (ICS @ UIBK)

 $TS \sim (TS/\sim)$

Obtaining Quotients

If one can compute \sim_{TS} then one can easily

- minimize TS to quotient system TS/\sim
- check whether $TS_0 \sim TS_1$

Problem: How to obtain \sim_{TS} ?

- Naive algorithm:
 - $\sim_{TS} := \emptyset$
 - for all $R \subseteq S imes S$ do
 - if R is bisimulation for TS then $\sim_{TS} := \sim_{TS} \cup R$

Naive algorithm is exponential in $|S| \Rightarrow$ not applicable

- Partition-Refinement-Algorithm, complexity: $\mathcal{O}(|S| \cdot (|AP| + | \rightarrow |))$
- (Improved PR-Algorithm, complexity: $\mathcal{O}(|S| \cdot |AP| + \log |S| \cdot |\rightarrow|))$

week 4

- Bakery-Algorithm: $TS^f = TS/\sim$ (However, often TS^f is not a bisimulation)
- Vending machines: $TS_2/\sim = TS_1$, $s_3 = [t_2]_{\sim_{TS_2}} = [t_3]_{\sim_{TS_2}} = \{t_2, t_3\}$

week 4

RT (ICS @ UIBK)

24/53

RT (ICS @ UIBK)

27/5

25/5

otient System

Idea of a Partition Refinement Algorithm

- Work with partitions $\Pi = \{B_1, \dots, B_n\}$ of S $(\cup B_i = S, B_i \cap B_j = \emptyset$ for $i \neq j, B_i \neq \emptyset)$
- Partition Π contains candidates for equivalence classes
- If Π is to coarse since some B contains obviously non-equivalent states s and t then refine Π and split B into smaller parts B₁ and B₂ such that s ∈ B₁ and t ∈ B₂
- \Rightarrow Refine initial Π until no further splitting is required
- Final value of Π = {C₁,..., C_k} contains real equivalence classes C_i of ~_{TS}
- \Rightarrow s ~_{TS} t iff s, t are contained in same C_i

RT (ICS @ UIBK)	week 4	
SSDS //S/		
Bisimulation		Quotient
Example		

28/53

Partition Refinement Algorithm $\Pi := \Pi_{AP} // \text{ partitioning of } S \text{ due to labeling with } AP$ repeat $\Pi_{old} := \Pi$ for all $C \in \Pi_{old}$ do $\Pi := \text{refine}(\Pi, C)$ until $\Pi = \Pi_{old}$ return $\Pi // \text{ result: } S/\sim_{TS}$

function refine(Π , C) // divide partitions due to transitions to Creturn $\bigcup_{B \in \Pi}$ refine(B, C)

function refine(B, C) return $\{\{s \in B \mid s \to t, t \in C\}, \{s \in B \mid \text{no } s \to t \text{ with } t \in C\}\} \setminus \emptyset$

 $\Pi_{AP} = \{\{s \mid L(s) = A\} \mid A \subseteq AP\} \setminus \emptyset$

Properties of refine

Definition

RT (ICS @ UIBK)

Partition Π is finer than Π' (Π' is coarser than Π) iff

for all $B \in \Pi$ there exists $C \in \Pi'$ such that $B \subseteq C$

Key lemmas:

RT (ICS @ UIBK)

Lemma (Coarsest Partition)

- $S/{\sim_{TS}}$ is coarsest partition Π such that
 - Π is finer than Π_{AP}
- refine(Π , C) = Π for all $C \in \Pi$

Lemma (Properties of refine)

- If Π , Π' are coarser than S/\sim_{TS} then
 - refine(Π , C) is finer than Π
 - refine(Π , C) is coarser than S/\sim_{TS} for all $C \in \Pi'$

31/53

29/5

Proof of Coarsest-Partition Lemma

Theorem

• The algorithm terminates

Bisimulation Summary

- The complexity is $\mathcal{O}(|S| \cdot (|AP| + |\rightarrow|))$

week 4

RT (ICS @ UIBK)	week 4	32/53
DDS //S/		
Bisimulation		Quotient Systems
Proof		

RT (ICS @ UIBK)

- The result is the set of equivalence classes of \sim_{TS} , i.e., S/\sim_{TS}

• $TS_1 \sim TS_2$ iff for all CTL*-formulas Φ : $TS_1 \models \Phi \Leftrightarrow TS_2 \models \Phi$

$$\sim = \equiv_{CTL}$$

- Smallest bisimilar system to TS: $TS/{\sim_{TS}} = TS/{\sim}$
- \sim_{TS} can be used to decide $TS_1 \sim TS_2$
- \sim_{TS} can be computed by partitioning algorithm

A Problem

Current approach:

- Given TS, compute TS/\sim_{TS} and then check formula
- Often, TS/\sim_{TS} is still too large
- Solution: Use abstraction function f such that $TS^f(TS_f) \ll TS/{\sim_{TS}}$
- Problem: for these f, $TS^f \not\sim TS$ and $TS_f \not\sim TS$
- \Rightarrow There are CTL*-formulas Φ and Ψ such that

 $TS^f \models \Phi \not\Leftrightarrow TS \models \Phi$ and $TS_f \models \Psi \not\Leftrightarrow TS \models \Psi$

 \Rightarrow Need for another connection between transition systems

Simulation Between Two Transition Systems

Let $TS_i = (S_i, \rightarrow_i, I_i, AP, L_i)$ be two transition systems.

Definition

A relation $R \subseteq S_1 \times S_2$ is a simulation relation iff

- 1. for all $s \in I_1$ exists $t \in I_2$: sRt and
- 2. for all *sRt* it holds:
 - $L_1(s) = L_2(t)$ • if $s \rightarrow_1 s'$ then $t \rightarrow_2 t'$ where s'Rt'

 TS_1 is simulated by TS_2 ($TS_1 \leq TS_2$) iff there is a simulation relation R for TS_1 and TS_2 Note that unlike \sim, \leq is no equivalence relation

week 4

AINA .

RT (ICS @ UIBK)

Lemma (Path Simulation)

Let R be a simulation of TS_1 and TS_2 , let s_0Rt_0 . Then for each path

 $s_0 s_1 s_2 s_3 \dots$ of TS_1

there is a similar path, i.e., a path

 $t_0 t_1 t_2 t_3 \dots$ of TS_2

such that for all i: s_iRt_i

RT (ICS @ UIBK)

Corollary (LTL and Similar Systems)

If $TS_1 \preceq TS_2$ then $TS_1 \models \varphi$ if $TS_2 \models \varphi$ for all LTL-formulas φ and $TS_1 \not\models \varphi$ implies $TS_2 \not\models \varphi$

Corollary (LTL and Similar Systems) Define $\simeq = \preceq \cap \succeq$ (simulation equivalence). Then

 $\simeq \subseteq \equiv_{LTL}$

Simulations and Abstractions

Proof of Theorem

Theorem

Let TS be some transition system, and f be an abstraction function. Then

 $TS \prec TS^{f}$ and $TS_f \preceq TS_f$

week 4

Corollary (Model Checking using Abstractions)

Let φ be arbitrary LTL-formula.

- If $TS^f \models \varphi$ then $TS \models \varphi$
- If $TS_f \not\models \varphi$ then $TS \not\models \varphi$

Lemma

Properties of \leq

RT (ICS @ UIBK)

- \leq is a pre-order (reflexive and transitive)
- \simeq is an equivalence relation
- $\sim \subseteq \simeq$

Note that both \sim and \simeq satisfy the path simulation lemma and are equivalence relations. Moreover,

 $\equiv_{CTI^*} = \sim \subseteq \simeq \subseteq \equiv_{ITI}$

week 4

Questions:

- Is $\sim = \simeq$? Then $\simeq = \equiv_{CTL^*}$
- If not, then where is the difference?

43/53

Simulation

Strengthening the Logic

Knowledge:

- $TS_1 \preceq TS_2$ implies $TS_1 \models \varphi \Leftarrow TS_2 \models \varphi$ for LTL-formulas φ
- $TS_1 \succeq TS_2$ implies $TS_1 \not\models \varphi \leftarrow TS_2 \not\models \varphi$ for LTL-formulas φ
- $TS_1 \simeq TS_2$ implies $TS_1 \models \varphi \Leftrightarrow TS_2 \models \varphi$ for LTL-formulas φ
- $TS_1 \simeq TS_2$ does not imply $TS_1 \models \Phi \Leftrightarrow TS_2 \models \Phi$ for CTL-formulas Φ
- $TS \preceq TS^f$ and $TS \succeq TS_f$

Want:

• Stronger logic than LTL which allows model-checking via TS^{f} :

$$TS \models \Phi \quad \Leftarrow \quad TS^f \models \Phi$$

• Logic which allows model-checking via TS_f :

$$TS \models \Phi \quad \Leftarrow \quad TS_f \models \Phi$$

week 4

RT (ICS @ UIBK)

Comparing LTL, ACTL*, and CTL*

Theorem

- ACTL* strictly subsumes LTL
- CTL* strictly subsumes ACTL*

Simulation

 $ACTL^* = CTL^*$ with All-Quantifier Only $ACTL^*$ -state-formulas:

$$\Phi ::= a \mid \neg a \mid \Phi \lor \Phi \mid \Phi \land \Phi \mid A \varphi$$

ACTL*-path-formulas:

$$\varphi ::= \mathsf{X}\,\varphi \mid \varphi \,\mathsf{U}\,\varphi \mid \varphi \,\mathsf{R}\,\varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Phi$$

Semantics of release-operator R:

 $\pi \models \varphi \, \mathsf{R} \, \psi \text{ iff } \forall \, n : \pi[n..] \models \psi \text{ or } (\exists \, i : \pi[i..] \models \varphi \text{ and } \forall j \leqslant i : \pi[j..] \models \psi)$

Derived path-operators:

RT (ICS @ UIBK)

$$F \varphi \equiv true \cup \varphi \quad and \quad G \varphi \equiv false R \varphi$$

Equivalences:
$$\neg(\varphi \cup \psi) \equiv \neg \varphi R \neg \psi \quad and \quad \neg(\varphi R \psi) \equiv \neg \varphi \cup \neg \psi$$

ACTL* strictly subsumes LTL

• First we show that each LTL-formula φ can be translated into positive normal form (PNF), where LTL-formula in PNF has following shape:

week 4

$$\varphi ::= \mathsf{X} \, \varphi \mid \varphi \, \mathsf{U} \, \varphi \mid \varphi \, \mathsf{R} \, \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathbf{a} \mid \neg \mathbf{a}$$

$$\neg \neg \varphi \quad \rightsquigarrow \quad \varphi$$
$$\neg X \varphi \quad \rightsquigarrow \quad X \neg \varphi$$
$$\neg (\varphi \cup \psi) \quad \rightsquigarrow \quad \neg \varphi R \neg \psi$$
$$\neg (\varphi R \psi) \quad \rightsquigarrow \quad \neg \varphi \cup \neg \psi$$
$$\neg (\varphi \wedge \psi) \quad \rightsquigarrow \quad \neg \varphi \vee \neg \psi$$
$$\neg (\varphi \vee \psi) \quad \rightsquigarrow \quad \neg \varphi \wedge \neg \psi$$

Hence, for LTL-formula φ obtain equivalent ψ in PNF. Then φ is equivalent to the ACTL*-formula A ψ . Thus, ACTL* subsumes LTL.

week 4

45/53

RT (ICS @ UIBK)

48/53

Simulation

CTL* strictly subsumes ACTL*

 Obviously, CTL* subsumes ACTL* as release can be expressed using negation and until:

 $\varphi \,\mathsf{R}\,\psi \equiv \neg \neg (\varphi \,\mathsf{R}\,\psi) \equiv \neg (\neg \varphi \,\mathsf{U}\,\neg \psi)$

- Similar to the previous results between \sim and CTL* one can show that for all ACTL* formulas $\Phi:$

 $TS_1 \preceq TS_2$ implies $TS_1 \models \Phi$ if $TS_2 \models \Phi$

Hence,

 $\equiv_{CTL^*} = \sim \subset \simeq \subseteq \equiv_{ACTL^*}$

shows that there must be CTL*-formulas which cannot be expressed in ACTL*, i.e., CTL* strictly subsumes ACTL*.

week 4

Simulation Summary

• Abstractions do not often lead to bisimulations, but always result in simulations:

 $TS \preceq TS^f$ and $TS_f \succeq TS$

 ACTL* is between LTL and CTL* and can be checked for model-checking using abstractions (over-approximations)

 $TS_1 \preceq TS_2$ implies $TS_1 \models \Phi$ if $TS_2 \models \Phi$

 ECTL* is sublogic of CTL* and can be checked for model-checking pusing abstractions (under-approximations)

 $TS_1 \succeq TS_2$ implies $TS_1 \models \Phi$ if $TS_2 \models \Phi$

- Reversing the directions yields methods to refute formulas
- Not shown:
 - Computing the quotient of \simeq in analogy to $S/{\sim}$
 - How to obtain initial abstractions, abstraction refinement

week 4

ECTL*

Results so far:

• ACTL*: Stronger logic than LTL, model-checking via TS^{f} :

$$TS \models \Phi \quad \Leftarrow \quad TS^f \models \Phi$$

• ECTL*: Logic, model-checking via *TS_f*:

$$TS \models \Phi \quad \Leftarrow \quad TS_f \models \Phi$$

ECTL*-state-formulas:

$$\Phi ::= a \mid \neg a \mid \Phi \lor \Phi \mid \Phi \land \Phi \mid \mathsf{E}\varphi$$

ECTL*-path-formulas:

- Aim: Try to solve the state-space explosion problem
- Bisimular systems satisfy the same CTL*-formulas
- Quotient S/\sim can efficiently be determined by partition-refinement
- If quotient is too large, one can further reduce the system-size by abstractions (over-approximation TS^f and under-approximation TS_f) \Rightarrow obtain simulation only

week 4

- For simulations LTL and (A/E)CTL* can be used, but neither CTL nor CTL*
- Challenge: Find good abstractions

RT (ICS @ UIBK)