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Model Checking Overview

Formalizing Modeling

system model
(transition
system)

property
specification
(LTL, CTL, ...)

Model Checking
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| Motwation |
Ways to Solve the State Space Explosion Problem

Let TS = (S,—, 1, AP, L) be transition system
Abstraction: f : S — S such that |S| < |S], obtain TS
Then perform model checking on abstract system: TS = p?

Questions:

¢ If TS = ¢, what about TS |= ¢7

o If TS K o, what about TS}~ ¢

e How to obtain f7
e Some answers:
e If TSis a bisimulation of TS then TS k= ¢ iff TS |= ¢ (CTLY)
e If TSis a simulation of TS then TS E ¢ implies TS = ¢ (ACTL*)
o If TSiis a simulation of TS then TS = ¢ implies TS=¢  (ECTL*)
e Computation of f such that TS is smallest bisimular system to TS
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Abstraction Example
Let TS= (S, —,l, AP, L) and S be a set of (abstract) states

Definition (Abstraction Function)

A function f: S — 3 is an abstraction function iff

f(s) = f(s') implies L(s) = L(s")

Definition (Abstracted Transition System)

For every abstraction function f, define the over-approximation
TSH = (S, —F, 1T, AP, Lf) where Lf(f(s)) = L(s), I = {f(s) | s € I}, and
—Ff is smallest relation such that
e s — ' implies f(s) —f f(s)
The under-approximation is TSy = (3, —¢,1¢, AP, L¢) where Lf = LT,
Ir = If, and — is largest relation such that

o f(s) —¢ s implies s — s’ for some s’ such that f(s') =75
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Different Kinds of Abstractions Example: Bakery algorithm

e Variable abstraction: only store subset of all variables
e.g., state (x, y, loc) ~~ state (x, loc)

e Data abstraction: concrete domain ~~ abstract (smaller) domain
e.g., IN ~» {even, odd} or IN ~» {pos,0, neg}

e Predicate abstraction: state ~~ valuation of the predicates
e.g., state (x, y, loc) ~» state (x > 0,x >y, loc = crit)
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Bakery Algorithm: Transition System Bakery Algorithm: Abstraction
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Abstraction Summary Bisimulation Between Two Transition Systems
Let TS; = (Si, —i, Ii, AP, L;) be two transition systems.
e Abstraction function f : S — S for AP such that Definition
A relation R C 5; x Sy is a bisimulation relation iff
AN H /
f(s) = f(s') implies L(s) = L(s") 1. forall s € l exists t € b : sRt and

for all t € I, exists s € I; : sRt and
2. for all sRt it holds:
. | o Li(s) = La(t)
Check TS" |= ¢ or TS¢ |= ¢ instead of TS |= ¢ o if s —»; s’ then t —5 t’ where 'Rt/
e Open question: relation between TS™ = ¢, TSf = ¢, and TS|= ¢ o if t —5 t' then s —; s’ where s'Rt’
TS; and TS, are bisimilar (TS; ~ TS,) iff there is a bisimulation relation
R for T51 and T52

From large (possibly infinite) system TS obtain
small (possibly finite) abstract system TS or TS¢
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Example
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Bisimulation of States

e Up to now: Bisimulation between two transition systems
e Upcoming: Bisimulation between states of same system

= Minimize number of states

Definition (Bisimilar States)

Let TS = (S,—,/, AP, L) be a transition system.
R C S x S is a bisimulation for TS such that for all sRt:

o L(s) = L(t)
o if s — s’ then t — t’' where 'Rt/

o if t — t' then s — s’ where s’'Rt’

States s and t are bisimilar for TS (s ~7s t) iff
there exists bisimulation R for TS with sRt.
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Properties of Bisimulations

Lemma
~ is an equivalence relation (~ is reflexive, symmetric, transitive)

Lemma (Path Bisimulation)

Let R be a bisimulation of TS1 and TSy, let soRty.
Then for each path
505152S3... OfTSl

there is a bisimilar path, i.e., a path
toti1totz... of TSy
such that for all i: s;Rt;

Corollary (LTL-Equivalence of Bisimilar Systems)
If TSy ~ TS, then TS |= ¢ iff TS, = ¢ for all LTL-formulas ¢
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Properties of ~ g
Let TS = (S,—,/, AP, L) be a transition system.
Lemma

e ~ 75 is an equivalence relation on §

e ~ s is a bisimulation for TS

~Ts is the largest bisimulation for TS
® 51 ~TS S iff(S, —, {51}, AP, L) ~ (5, —, {52}, AP, L)

Consequence: Deciding TSy ~ TSy via ~75

Corollary (Check of bisimilarity of transition systems)
Let TS; = (5,', —i i, AP, L,') with S5o NSy = &. Then TSy ~ TSy iff

for all s; € I; there is s;_; € lh_; such that s; ~15 s1_;
where TS = (50 USi,—oU—1,3,AP, Lo U Ll)
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Proof of Lemma Short Reminder: CTL*

A state-formula ® holds in state s (written s &= @) iff
skEa iff ae L(s)
sk od  iff PO
sEOAV iff sEdands =V
sEEp iff 7 = ¢ for some path 7 that starts in s

A path-formula ¢ holds for path = (written 7 = ) iff
=X iff 7[1..] =
TE=pUy  iff (3n>=0.7[n.] = and (VO < i< nx[i] =)
TEeANY iffrEeand mE Y
= —p iff = @

T o iff 7[0] = &
Derived operators: A,F,G,V,...
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Bisimulation and CTL* Proof

Let TS=(S,—,/,AP,L). Define =c7;+ CS xS as
s =cri- tiff (s = @ iff t = @) for all CTL"-state-formulas ¢

Similar definition for =¢7;

Theorem
=CcTL = =CTIx = ~TS

= Bisimilar systems satisfy the same CTL*-formulas

=- Non-bisimilar systems can be distinguished by a CTL-formula
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Proof Continued
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Examples

week 4

e Bakery-Algorithm: TS = TS/~
(However, often TS’ is not a bisimulation)

e Vending machines: TSy/~ =
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= [t3]~ 75, = {12, 13}
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Quotient System

Since ~7s is equivalence relation, we can write [s]. . as the equivalence
class to which s belongs ([s]~,s = {t | s ~7s t}).
Definition (Quotient of a Transition System)
Let TS=(S,—,/,AP,L). The quotient system TS/~7s
(or TS/~ for short) is defined as (S', =/, I’, AP, L'):
o S'=5/~1s={[slvrs | s € S}
e whenever s — t then [s] s = [t]~/s
o I'=1/~7s={[s]l~rs | s €1}
o L([slrs) = L(s)

Theorem
TS~ (TS/ ~)
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Obtaining Quotients

If one can compute ~ 715 then one can easily
e minimize TS to quotient system TS/~
e check whether TSy ~ TS;

Problem: How to obtain ~ 157

e Naive algorithm:
~Tg = O
foral RC S x S do
if R is bisimulation for TS then ~75:= ~7sUR

Naive algorithm is exponential in |S| = not applicable

e Partition-Refinement-Algorithm, complexity: O(|S|- (JAP| + |—]))
e (Improved PR-Algorithm, complexity: O(|S|-|AP| + log|S| - |—]))
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|dea of a Partition Refinement Algorithm

e Work with partitions N = {By,...,Bp} of S
(UB,‘ZS, B,'ﬂBjZ@fOI’i;ﬁj, B,';é@)

e Partition I1 contains candidates for equivalence classes

e If I is to coarse since some B contains obviously non-equivalent
states s and t then refine I1 and split B into smaller parts B; and B>
suchthat se By and t € By

= Refine initial T until no further splitting is required

e Final value of M = {(,..., Cx} contains real equivalence classes C;
of ~7s

= s ~rs tiff s, t are contained in same C;
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Example
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Partition Refinement Algorithm
M:=TMap // partitioning of S due to labeling with AP
repeat

Mg :=1T1

for all C €I,y do

M := refine(MN, C)

until M =T,y
return 1 // result: S/~7s

function refine(N, C) // divide partitions due to transitions to C
return | Jgp refine(B, C)

function refine(B, C)
return {{se B|s—t,te C},{s€B|nos—twithte C}}\o

Map={{s| L(s) = A} | AC AP}\ &
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Properties of refine

Definition
Partition M is finer than M’ (M’ is coarser than M) iff

for all B € 1N there exists C € I’ such that B C C

Key lemmas:

Lemma (Coarsest Partition)

S/~Ts is coarsest partition I such that
e [1 s finer than Map
e refine(M, C) =M for all C €1

Lemma (Properties of refine)
If 1,1V are coarser than S/~1s then
o refine(I, C) is finer than N
o refine(M, C) is coarser than S/~ s for all C € TV
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Proof of Coarsest-Partition Lemma Properties of the Algorithm

Theorem

e The algorithm terminates
e The complexity is O(|S| - (JAP| + |—]))

e The result is the set of equivalence classes of ~ts, i.e., S/~Ts
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Proof Bisimulation Summary

TS; ~ TS, iff for all CTL*-formulas ®: TS; E® < TS E ¢

~ = =(CTL*

Smallest bisimilar system to TS: TS/~7s= TS/~
e ~ 7 can be used to decide TS; ~ TS,
e ~ 75 can be computed by partitioning algorithm
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A Problem

Current approach:
e Given TS, compute TS/~7s and then check formula
e Often, TS/~7s is still too large
e Solution: Use abstraction function f such that TSf(TSf) L TS/~71s¢
e Problem: for these f, TS" ¢ TS and TSf £ TS
= There are CTL*-formulas ¢ and V such that
TS Ed A TSE® and TS =V A TSEW

= Need for another connection between transition systems
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Example
TS TS,
pay ()
G@
D
(&) ()

beer sprite beer sprite beer sprite

Previous results: TSy ~ TSy o TS3
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Simulation Between Two Transition Systems

Let TS; = (S;, —i, Ii, AP, L;) be two transition systems.
Definition
A relation R C S7 x S5 is a simulation relation iff

1. forall s € I; exists t € I, : sRt and
2. for all sRt it holds:

o Li(s) = Lo(t)
e if s —; s’ then t —5 t’ where s'Rt’

TSy is simulated by TS, (TS; = TS,) iff there is a simulation relation R
for TS; and TS,
Note that unlike ~, < is no equivalence relation
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Lemma (Path Simulation)

Let R be a simulation of TSy and TS», let syRty.
Then for each path
S0S15S3... of TSy

there is a similar path, i.e., a path
totitots... of TS,

such that for all i: s;Rt;

Corollary (LTL and Similar Systems)

If TSy < TS, then TSy |= ¢ if TSy |= ¢ for all LTL-formulas ¢
and TSy [~ ¢ implies TSy [~ ¢

Corollary (LTL and Similar Systems)

Define ~ = <N = (simulation equivalence). Then

~C

LTL
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Simulations and Abstractions Proof of Theorem

Theorem
Let TS be some transition system, and f be an abstraction function. Then

TS =< TS and TSf < TS.

Corollary (Model Checking using Abstractions)
Let ¢ be arbitrary LTL-formula.

o If TS = then TS = ¢

o If TS¢ b~ ¢ then TS |~ ¢
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Properties of < Example
Lemma

e < is a pre-order (reflexive and transitive)
e ~ js an equivalence relation

.Ngg

Note that both ~ and ~~ satisfy the path simulation lemma and are
equivalence relations. Moreover,

1
@)
B
I
2
N
2
N
1
o
S

Questions:
o Is~ =7 Then ~ = =c7y+
e If not, then where is the difference?
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Strengthening the Logic

Knowledge:
e TS X TSy implies TS; = ¢ < TS, = ¢ for LTL-formulas ¢
o TS; = TSy implies TS; = ¢ <= TSy = ¢ for LTL-formulas ¢
o TS ~ TSy implies TS; E ¢ < TS, = ¢ for LTL-formulas ¢
e TS; ~ TS, does not imply TS; = @ < TS, = @ for CTL-formulas ¢
e TS=<TS" and TS»= TS
Want:
e Stronger logic than LTL which allows model-checking via TS':

=
=

TS <« TS E=o
e Logic which allows model-checking via T5¢:

TSE® « TS Eo

RT (ICS @ UIBK) week 4 45/53

Comparing LTL, ACTL*, and CTL*

Theorem

o ACTL* strictly subsumes LTL
o CTL* strictly subsumes ACTL*
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ACTL* = CTL* with All-Quantifier Only

ACTL*-state-formulas:

bi=a|-a|dVP|DPAD|Ap

ACTL*-path-formulas:

pu=XploUp|pRoloVeloneg|®
Semantics of release-operator R:
TlEeRYiffYn:n[n.]EYor (3i:nli] Eeand Vj<i:n[j.] )
Derived path-operators:

Fo=trueUeyp and Gy =falseRyp
Equivalences:

~(pUd) = -pR— and “(pRY) = U
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ACTL* strictly subsumes LTL

e First we show that each LTL-formula ¢ can be translated into positive
normal form (PNF), where LTL-formula in PNF has following shape:

pu=XploUp|oRp|pVe|pAplal-a
e
Xp ~ X=p
~(pU) R
~(pRY) Al
(e AP) —pV
(V) ~ A

Hence, for LTL-formula ¢ obtain equivalent ¥ in PNF. Then ¢ is equivalent
to the ACTL*-formula A4. Thus, ACTL* subsumes LTL.

§ 8
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CTL* strictly subsumes ACTL*

e Obviously, CTL* subsumes ACTL* as release can be expressed using

negation and until:

¢RY = =(pRY) = ~(-pU—1)

e Similar to the previous results between ~ and CTL* one can show

that for all ACTL* formulas ¢:

TSl j T52 implies TSl ): d if T52 ): 0]

Hence,

=crir =~ C =2 C =acTL>

shows that there must be CTL*-formulas which cannot be expressed

in ACTL*, i.e., CTL* strictly subsumes ACTL*.
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e Abstractions do not often lead to bisimulations, but always result in

simulations:
TS=< TS

e ACTL* is between LTL and CTL* and can be checked for
model-checking using abstractions (over-approximations)

TS; 2 TSy implies TS; E @ if TS, = @

e ECTL* is sublogic of CTL* and can be checked for model-checking
using abstractions (under-approximations)

TSl t T52 implies TSl ): d if T52 ): 0]

e Reversing the directions yields methods to refute formulas

e Not shown:

e Computing the quotient of ~ in analogy to S/~
e How to obtain initial abstractions, abstraction refinement
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ECTL*

Results so far:
e ACTL*: Stronger logic than LTL, model-checking via TS:

TSE® « TS ko

e ECTL*: Logic, model-checking via TS5¢:
TSE® <« TSRO
ECTL*-state-formulas:
bi=al-al|dVP|OAD|Ep
ECTL*-path-formulas:

pr=Xp|lpUp|pRp|loVe|lpAp|d
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Summary

e Aim: Try to solve the state-space explosion problem
e Bisimular systems satisfy the same CTL*-formulas
e Quotient S/~ can efficiently be determined by partition-refinement

e If quotient is too large, one can further reduce the system-size by
abstractions (over-approximation TS’ and under-approximation TSy)
= obtain simulation only

e For simulations LTL and (A/E)CTL* can be used,
but neither CTL nor CTL*

e Challenge: Find good abstractions
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