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Why Real-Time Systems are Important

Examples
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Clocks and Constraints

Clocks
e A clock can measure times € IR*°
e Clocks are usually written by x, y, ..., sets of clocks are C, D, ...

Clock-Constraints
A clock-constraint over clocks C is g € CC(C):

gi=x<c|x<c|x>c|x=>clghg

where x € C,c € IN
e Extension to rational numbers possible (but simple to avoid)
o Constraints of form x — y < ¢, ... possible (but not considered)
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Timed Automata

Main ideas:
e Global time
e Add clock constraints to states (invariants) and transitions (guards)
e Clocks can be reseted when performing transition

e Time can elapse in states

Transitions are performed instantaneous

Parallel composition of timed automata via hand-shaking actions
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Timed Automata (formally)

A timed automata is octuple TA = (Loc, Act, C, —, Locy, Inv, AP, L)
e Loc: set of locations

Act: set of actions

Locy: set of initial locations

AP: set of atomic propositions

L: labeling function, L : Loc — 2AF

o (: set of clocks
e —: transition relation, — C Loc x CC(C) x Act x 2¢ x Loc
e [nv: invariant assignment, /nv: Loc — CC(C)

State of transition system for timed automaton consists of location and

clock-evaluation o (o : C — IR*?)
Meaning of s €20, 4 |f o satisfies g then one can perform a-step and all
clocks in D will be reseted to 0.

Meaning of Inv(s) = g: One can only stay in s if « satisfies g
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Example: Guards versus Location Invariants

Convention: Omit constraint “true” and empty set of reseted clocks

— ¢ O x>2:a,{x}

1
= <3 Dx}Q.a,{x}

N

—> >2<x<3:a,{x}
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Example: Train-Gate-Controller

approach near approach 1
{v} y <5 {z} z<1
exit 7 > 2: enter raise 7 =1
lower
y
in exit
2
y<b z<1 {z} .

m lower | coming down
x| xs1

x <2 x} own

X
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Composing Timed Automata

Definition

Given TA; = (Loc;, Actj, G, — i, Locy i, Invi, APj, L;) where

APiNAP, = G NG =@. Let HC Act; N Act, be a set of
handshake-actions. Then the timed automaton TA;||y TA; is defined as

(Locy x Locy, Acty U Acty, G U G, —, Locp 1 X Locy o, Inv, AP U AP, L)

o L((f1,02)) = L1(t1) U L2(£2)
° Inv((ﬁl, 52)) = /nv1(£1) VAN /nV2(f2)

e — is defined as follows:

:a,D :a,D,;
él 81:a,U1 lfll 52 82:a,2 2€/2

ifac H
(fr, bp) 81822D10D2 (g1

A g1:3,D1 1£/1 ?5 g2:3,D; 2€I2

ifa¢ H

ifa¢g H
(£, £2) 22250, (44, 45) (01, 02) ~&22P2, (11, 04)
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Timed Automata - A Way to Model Real-Time Systems Syntax and Composition

Example
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Semantic w.r.t. Clocks

e Given g € CC(C) and a : C — IRZ? the meaning of o |= g is obvious
e For d € R*? and « define o + d as

(a+ d)(x) = a(x) +d

e For D C C and a define a[D := 0] as

0 if xe D

a(x) otherwise

a[D = 0](x) = {

RT (ICS @ UIBK) week 5 13/49


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transition System for a Timed Automaton

For TA = (Loc, Act, C, — , Locy, Inv, AP, L) obtain transition system:
e States = Locations + Clock-Evaluation (infinite number of states)
e Discrete Transitions: perform (classical) transition

e Delay Transitions: let time pass and stay in a location

Formally: TS(TA) is the transition system (S, Act/,—' I, AP, L")

S = Locx (C — R*9)

Act' = Act UIR*®

I ={(l,a)| e Locy,a = Inv(£)} where a(x) =0 for all x € C
L'((¢, @) = L(¢)

—' is composed of two parts: discrete and delay transitions
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Transitions of TS(TA)

Discrete Transition
(¢, ) —, (¢',a[D :=0]) iff

o (-£2D, yis transition in TA

caf=g
e o[D = 0] | InV({)

Delay Transition
() —4 ({,a+ d) iff

e a+d [ Inv({) and d € R??
(This implies that o + d’ |= Inv(¢) for all 0 < d’ < d)
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Timed Automata - A Way to Model Real-Time Systems Semantic

Example

sw_on
{x} on
0
<
sw_off K2
x>1
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Progress of Time

Essentially, the semantics of TA is obtained from paths in TS(TA)

For each path m = sy —7, s1 —, 52 —, ... define its execution time as

ExecTime(m) = Z Ti

T,'GIR>0

For semantics of TA there are certain undesired paths / states in TS(TA)

e Time convergent paths (will be ignored)
e States which are timelocks (modeling flaw)
e Zeno paths (modeling flaw)
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Time Convergent Paths

Race of Achilles (10m/s) versus some fast turtle (1m/s)
Turtle gets 100m in advance
Time elapsed ‘ Achilles ‘ Turtle
Os Om | 100m
10s 100m | 110m
11s 110m | 111m

Every time Achilles reaches previous point of turtle, the turtle is already a
bit ahead. Thus, the turtle wins!?!

Problem: The above claim is only valid for time-points < 11.111...s
Similar problem: time convergent paths 7 which satisfy ExecTime(m) < w
a

Does TA satisfy formula AF a? Yes, time-convergent paths like

s—185—15—1 ... will beignored. Only consider time divergent paths!
2 4 8
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Design Flaws

Usually, time-convergent paths cannot be avoided and will just be ignored
for model-checking

The following kinds of phenomena are seen as design flaws and the user
has to modify the timed automata to get rid of these phenomena
o A state s is a time-lock if there is no time-divergent path starting in s.
TA has a time-lock if there is some reachable state s of TS(TA) which
is a time-lock.
Problem of time-locks: Time cannot proceed beyond certain point
e A path 7 is zeno if it is time-convergent and contains infinitely many
actions a € Act. TA is zeno if there is some (initial) path in TS(TA)
which is zeno.
Problem of zeno paths: infinitely actions in finite time, unrealistic
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Dealing with Design Flaws

o First step: Apply algorithm to detect time-locks and zeno-paths

e Second step: Fix problem
Example: one way to avoid zeno paths is to add x > "small value” as
additional guard to actions where additionally it is ensured that x is
reseted before
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Timed Computational Tree Logic (TCTL)
A TCTL-state formula ® has the following form:

bu=al|g|PAND| D |EY|AY

where a € AP is atomic proposition and g € CC(C) is clock constraint,

and ) is a TCTL-path formula
Y=o U D
where J € IR?? is an interval with bounds in IN U {co}

The connectives V,true, ... are derived as usual. Moreover,

F/lo = trueU’o
EG'¢ = -AF/-0
AG'd = —-EF’/-0

RT (ICS @ UIBK) week 5
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Timed CTL

Examples

sw_on
{x} on
0
<
sw_off K2
x>1
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Towards the Semantics of TCTL

o Already stated: only time-divergent paths are considered
e Compare
1 4
S1—1S1+t - =151+ 5 —aSH 45 —>pS3...
6 6 & 3
with A
51 —4 51+§_>352 —4S5+4—ps53...
3

Both paths are equivalent and we only consider the latter one where
consecutive delay-transitions are merged into one delay-transition

o Afterwards merge each delay-transition with the following discrete
transition to compressed path. Since actions are ignored by (T)CTL,
only denote the consumed time:

S1 —4 52 —4 83...
3

e |f compressed path contains only finitely many discrete transitions
then use —1-steps until infinity: s a2 sp 2155 +1 =15 +2...
RT (ICS @ UIBK) week 5 24/49
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Semantics of TCTL

Let TA = (Loc, Act, C, —, Locy, Inv, AP, L). Then a state s of TS(TA)
has the form (¢, a) where ¢ € Loc and « is a clock-evaluation.

e sk aiffae L({)

sEgiffakEg

sE-Oiff s £ @

sEOAVIffsEdands E WV

s |= E ¢ iff there is some time-divergent compressed path m: 7 = ¢

s = A iff for all time-divergent compressed paths m: 7 |= ¢
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Semantics of TCTL (continued)

Let 7 be a time-divergent compressed path
T =50 —dy S1 —dy S2 —“dr S3---
Then 7 = & U7V iff
e there is some i such that s; + d = VW for some d € [0, dj] with

i—1
d+Y dield
k=0

and for all j </ and all d’ € [0, dj] such that

d/+de d+de

the relation s; + d' = ® vV ¥ is valid
As usual, TA = ® iff all initial states satisfy ®
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Some Notes on TCTL

e There is no next-operator (X) since it is unclear what the next point
in time should be

e The intervals need not be hit by state of path, e.g.,
SO —1S1 —4S52... ’: F[2’3]a

provided that a € L(s1)

e The semantics of until requires that the left formula is satisfied from
now on until the right- formula is satisfied, and not only from the start
of J onwards, e.g.,

so—1 51 —4 5 aURl,

provided that a ¢ L(sp), a € L(s1)
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More Notes on TCTL

In CTLimrj=®U V.. .andforallj<i:sjf=®
In TCTL: = U/W .. and forall j<i:sp+d EdVvV

e Not a real difference in CTL since UV =¢7; (¢ VV)U WV

o Allows early satisfaction of right formula:
sw_on

off /{;}\A

x<1 x <4
~sw-off_

x = 3,{x}

TA |= Aoff U [12lon
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Timed CTL

Example
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Overview

Main question:

TAE®

for timed automata TA and TCTL-state-formula ¢

44

Know: TA |= @ iff TS(TA) = ¢
First Problem: TS(TA) has infinitely many states

Solution: Construct region transition system RTS (quotient of
TS(TA)) with finitely many states

Second Problem: How to deal with intervals J in W; U J\UQ

Solution: Add additional clock which allows to transform & into
CTL-formula W

TAE® iff RTSEV
TCTL-model checking boils down to CTL-model checking

Restriction: From now only consider non-zeno timed automata

RT (ICS @ UIBK) week 5
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Idea of Region Transition System
Goal: Checking TA = ¢. Let x be some clock of TA
e First observation: All clock constraints consists of atoms
x< /< />=/>cforsomecelN
= It does not matter whether x = 2.334 or x = 2.893, both values of x
satisfy the same clock constraints
= Abstract from concrete value of x, only consider following intervals:

{0},(0,1), {1}, (1,2),{2},(2,3), ...

= Far less values, but still infinitely many

e Second observation: There is some largest constant ¢, which occurs
in a clock constraints about x in TA and ¢
= The following finite set of intervals suffices:

{0},(0,1),{1},(1,2),...,(ex — 1, ¢x), {ex F(ex, 20)

By just looking at these intervals one can still decide all clock

constraints which occur in TA and ®
RT (ICS @ UIBK) week 5 32/49


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

sw_on

{x} -
f x<2 [ Dswon. {x}
SW_O
x>1

Clocks: C = {x,y}. Question: TA = AF(y =3 Aoff)?
e States in TS(TA): (£,x,y) with £ € {on, off}, x,y € R*°
e From TA and ® extract ¢, =2 and ¢, =3

e States in region transition system RTS: (¢, x,y) with £ € {on, off}
and (x, y) is one of the following 48 regions (point, line segment, or
white area):
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Delay Transitions in Region Transition System

e Have: finite region transition system, fine enough to decide clock
constraints
= Possible to mimic discrete transitions within region transition system
e Guard of transition can be checked by region
e Resetting clocks can be done directly with regions
e Invariant of locations can be checked by region

e Region transition system is not fine enough to mimic delay transitions:

e Consider clocks x, y and region R ="x € (0,1) Ay € (2,3)"
e Want to compute the next region. Candidates:

x=1Aye€(2,3) or x=1Ay=3 or x€(0,1)Ay=3
e Problem: all three cases are possible when starting in R
x=08,y=23 or x=07,y=27 or x=04y=29

e Solution: construct finer regions where additionally the fractional parts
of clock values are compared with <
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Model Checking for Timed CTL Region Transition System

Example

With refinement obtain 12 additional regions
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Regions (Formally)

frac(d) denotes the fractional part of d, |d| denotes the integral part of d

Definition (Clock Equivalence, Region, Unbounded Region)

Let o, 3 € C — IR* be clock valuations. Let c, Cy,... be the maximal
occurring constants. Then « and (3 are clock equivalent (« = [3) iff one of
the following two conditions are satisfied

e for all x € C: a(x) > ¢x and B(x) > o
e for all x,y € C where a(x), 8(x) < ¢« and a(y), B(y) < ¢, the
following two conditions are satisfied:
e |a(x)] =|B(x)] and frac(a(x)) = 0 iff frac(B(x)) =0
o frac(a(x)) < frac(a(y)) iff  frac(B(x)) < frac(B(y))
The regions are the equivalence classes of ~
The unbounded region R, is the equivalence class of « (i.e, Roo = [c]x)
where a(x) = ¢+ 1, for all x € C
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Number of Regions
Let « be a clock valuation. The corresponding region is identified by
e integral parts a, i.e., by [a(x)], [a(y)],-..

I o + 1 possibilities
xeC

e being an natural number or not, i.e., by bits frac(a(x)) =0,...

2€l possibilities

e order of fractional parts, e.g., frac(a(x)) = frac(a(z)) < frac(a(y))
|C|t - 2!€I1 possibilities
= number of regions is bounded by
([T e +1)-4 -1
xeC

= size of region transition system is exponential in number of clocks
RT (ICS @ UIBK) week 5
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Successor of a Region

For each region R there is a unique successor region succ(R):
e If R = Ry then succ(R) = Ry

e If R # Ry then succ(R) is the unique region R’ such that R' # R
and for all o € R:

Id>0:(a+deR andV0< d' <d:a+d € RUR)

So, R' # R is the region that is visited next when starting in R

SENER) week 5
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Example

0 1 2 3
x=0A1<y<?2

RT (ICS @ UIBK)

—succ
—succ
—7succ
—succ
—succ
—succ
—succ
—7succ

—succ

0<x<1Al<y<2A frac(x) < frac(y)
0<x<lAy=2
0<x<1A2<y<3A frac(x) > frac(y)
x=1AN2<y<3
1<x<2A2<y<3Afrac(x) < frac(y)
l<x<2Ay=3

l<x<2Ay>3

x=2ANy>3

Rew:x>2ANy >3

week 5
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Region Transition System

Definition

Let TA = (Loc, Act, C, — , Locy, Inv, AP, L) and TCTL-formula ¢ be
given. Then RTS(TA, ®) is the region transition system

RTS = (Loc x (C — R?Y/ =), —' 1, APU CC(®), L")

C — IR”%/ = are the clock evaluations modulo =, i.e, the regions
I ={([a]z) | £ € Locyg, a |= Inv(€)} where a(x) =0 for all x € C
CC(®) are the clock-constraints that are occurring in ¢

L((6,R)) = L(O) U {g € CC() | R = g}

(4, R) =’ (¢, R") if succ(R) = R" and R" |= Inv({)

e ((,R) =" (¢,R[D :=0]) if

o (-£2P, s transition in TA

el
e R[D:=0] = Inv({')

RT (ICS @ UIBK) week 5
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Remarks on Region Transition System

e RID:=0]={a[D:=0]|ac R}

e RE=giffforalla e R:af=giffthereexistsa € R:a =g
= There is no ambiguity in the labeling

e = needs values ¢y, ¢y,.... These are extracted from TA and ®

e Clock constraints of ® seen as TCTL-formula become atomic
propositions in RTS(TA, @)

RT (ICS @ UIBK) week 5
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Model Checking for Timed CTL Region Transition System

Example
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Properties of Region Transition System

Recall: only timed automata are considered which are non-zeno

Theorem
TA has a time-lock iff RTS(TA, true) has a reachable terminal state

= Directly yields method to check for time-locks

Theorem
TA |= ® iff RTS(TA, ®) = ¢

(TS(TA) is bisimilar to RTS(TA, ®) w.r.t. AP where AP does not contain
guards exceeding cy, cy,...)
= Perform CTL-model checking on finite system to answer TA |= ¢
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One Remaining Problem

Now: standard CTL-model checking on RTS applicable to answer TA = ¢

With this approach cover
bu=al|g|PAND| D |EY|AY

where
PYi=dUD

However, unclear how to handle ® U”® where J # [0, o0)
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Elimination of Timing Parameters
Aim: Get rid of J in dU W
Solution:

e Add fresh clock z to TA, obtain TAW {z}
(z is not reseted, neither contained in guards nor in invariants)

=z counts global elapsed time
e Lift Sat(®) and Sat(V) from TA to TAW {z}
e Replace U W by £ := (0 VW)U (z € JAV)

Theorem (Elimination of Timing Parameters)
o s=EEQUIV iff s[{z}:=01=E¢  (pure CTL model-checking)
e s=AGUIV iff s[{z}:=0]=A¢ (pure CTL model-checking)

Here, s is state of RTS(TA,...) and s[{z} := 0] is state of
RTS(TAW{z},...). Note that for building RTS(TAW {z},...) one also
has to consider the clock constraint z € J which determines c,

RT (ICS @ UIBK) week 5 45/49


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example

x = 1: sw_on

&)

x = 1: sw_off

parts of RTS(TAwW {z},...z<1...)

Ay B1 o " Dy
off off off off
—> 0 0<x<1 1 x>1
z=0 zZ=X z=1 z>1
E; 1 Gy C E>
on on on off
x=0 0<x<1 X = X =
z=1 z>1 z>1 z>1
/1
’
RT (ICS @ UIBK) week 5
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Model Checking for Timed CTL Model Checking via CTL

Example

RT (ICS @ UIBK) week 5


http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

Often modeling is only adequate if real-time aspects can be expressed

Complex real-time systems can be modeled via composition of timed
automata (containing clocks, guards, invariants)

Timed CTL is extension of CTL where until-operator is equipped with
intervals

Model-checking for timed CTL possible via region transition system
(but exponential in number of clocks)
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