
Model Checking

René Thiemann

Institute of Computer Science

University of Innsbruck

SS 2008

RT (ICS @ UIBK) week 5 1/49

Outline

Why Real-Time Systems are Important

Timed Automata - A Way to Model Real-Time Systems
Syntax and Composition
Semantic
Undesired Behaviors

Timed CTL

Model Checking for Timed CTL
Region Transition System
Model Checking via CTL

Summary

RT (ICS @ UIBK) week 5 2/49

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss08/mc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Why Real-Time Systems are Important

Examples

RT (ICS @ UIBK) week 5 4/49

Timed Automata - A Way to Model Real-Time Systems Syntax and Composition

Clocks and Constraints

Clocks

• A clock can measure times ∈ IR>0

• Clocks are usually written by x , y , . . . , sets of clocks are C ,D, . . .

Clock-Constraints
A clock-constraint over clocks C is g ∈ CC (C ):

g ::= x < c | x 6 c | x > c | x > c | g ∧ g

where x ∈ C , c ∈ IN

• Extension to rational numbers possible (but simple to avoid)

• Constraints of form x − y < c , . . . possible (but not considered)

RT (ICS @ UIBK) week 5 6/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Timed Automata - A Way to Model Real-Time Systems Syntax and Composition

Timed Automata

Main ideas:

• Global time

• Add clock constraints to states (invariants) and transitions (guards)

• Clocks can be reseted when performing transition

• Time can elapse in states

• Transitions are performed instantaneous

• Parallel composition of timed automata via hand-shaking actions

RT (ICS @ UIBK) week 5 7/49

Timed Automata - A Way to Model Real-Time Systems Syntax and Composition

Timed Automata (formally)

A timed automata is octuple TA = (Loc,Act,C , −→ , Loc0, Inv,AP, L)

• Loc: set of locations

• Act: set of actions

• Loc0: set of initial locations

• AP: set of atomic propositions

• L: labeling function, L : Loc→ 2AP

• C : set of clocks

• −→ : transition relation, −→ ⊆ Loc× CC (C )× Act× 2C × Loc

• Inv: invariant assignment, Inv : Loc→ CC (C )

State of transition system for timed automaton consists of location and
clock-evaluation α (α : C → IR>0)

Meaning of s g :a,D−−−−→ t: If α satisfies g then one can perform a-step and all
clocks in D will be reseted to 0.
Meaning of Inv(s) = g : One can only stay in s if α satisfies g

RT (ICS @ UIBK) week 5 8/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Timed Automata - A Way to Model Real-Time Systems Syntax and Composition

Example: Guards versus Location Invariants

Convention: Omit constraint “true” and empty set of reseted clocks

`
x > 2 : a, {x}

`

x 6 3
x > 2 : a, {x}

`
2 6 x 6 3 : a, {x}

RT (ICS @ UIBK) week 5 9/49

Timed Automata - A Way to Model Real-Time Systems Syntax and Composition

Example: Train-Gate-Controller

far
near

y 6 5

in

y 6 5

approach

{y}

y > 2: enterexit

0
1

z 6 1

2
3

z 6 1

approach

{z}

z = 1:

lower

exit

{z}

raise

up

going up

x 6 2
down

coming down

x 6 1

lower

{x}

raise

{x}

x > 1

RT (ICS @ UIBK) week 5 10/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Timed Automata - A Way to Model Real-Time Systems Syntax and Composition

Composing Timed Automata

Definition
Given TAi = (Loci ,Acti ,Ci , −→ i , Loc0,i , Invi ,APi , Li ) where
AP1 ∩ AP2 = C1 ∩ C2 = ∅. Let H ⊆ Act1 ∩ Act2 be a set of
handshake-actions. Then the timed automaton TA1||HTA2 is defined as

(Loc1 × Loc2,Act1 ∪ Act2,C1 ∪ C2, −→ , Loc0,1 × Loc0,2, Inv,AP1 ∪ AP2, L)

• L((`1, `2)) = L1(`1) ∪ L2(`2)

• Inv((`1, `2)) = Inv1(`1) ∧ Inv2(`2)

• −→ is defined as follows:

`1
g1:a,D1−−−−−→ 1`

′
1 `2

g2:a,D2−−−−−→ 2`
′
2

(`1, `2) g1∧g2:a,D1∪D2−−−−−−−−−−→ (`′1, `
′
2)

if a ∈ H

`1
g1:a,D1−−−−−→ 1`

′
1

(`1, `2) g1:a,D1−−−−−→ (`′1, `2)
if a /∈ H

`2
g2:a,D2−−−−−→ 2`

′
2

(`1, `2) g2:a,D2−−−−−→ (`1, `
′
2)

if a /∈ H

RT (ICS @ UIBK) week 5 11/49

Timed Automata - A Way to Model Real-Time Systems Syntax and Composition

Example

RT (ICS @ UIBK) week 5 12/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Timed Automata - A Way to Model Real-Time Systems Semantic

Semantic w.r.t. Clocks

• Given g ∈ CC (C ) and α : C → IR>0 the meaning of α |= g is obvious

• For d ∈ IR>0 and α define α + d as

(α + d)(x) = α(x) + d

• For D ⊆ C and α define α[D := 0] as

α[D := 0](x) =

{
0 if x ∈ D

α(x) otherwise

RT (ICS @ UIBK) week 5 13/49

Timed Automata - A Way to Model Real-Time Systems Semantic

Transition System for a Timed Automaton

For TA = (Loc,Act,C , −→ , Loc0, Inv,AP, L) obtain transition system:

• States = Locations + Clock-Evaluation (infinite number of states)

• Discrete Transitions: perform (classical) transition

• Delay Transitions: let time pass and stay in a location

Formally: TS(TA) is the transition system (S ,Act′,→′, I ,AP, L′)

• S = Loc× (C → IR>0)

• Act′ = Act ∪ IR>0

• I = {(`, α) | ` ∈ Loc0, α |= Inv(`)} where α(x) = 0 for all x ∈ C

• L′((`, α)) = L(`)

• →′ is composed of two parts: discrete and delay transitions

RT (ICS @ UIBK) week 5 14/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Timed Automata - A Way to Model Real-Time Systems Semantic

Transitions of TS(TA)

Discrete Transition

(`, α)→a (`′, α[D := 0]) iff

• ` g :a,D−−−−→ `′ is transition in TA

• α |= g

• α[D := 0] |= Inv(`′)

Delay Transition
(`, α)→d (`, α + d) iff

• α + d |= Inv(`) and d ∈ IR>0

(This implies that α + d ′ |= Inv(`) for all 0 6 d ′ 6 d)

RT (ICS @ UIBK) week 5 15/49

Timed Automata - A Way to Model Real-Time Systems Semantic

Example

off
on

x 6 2
sw off

x > 1

sw on

{x}

RT (ICS @ UIBK) week 5 16/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Timed Automata - A Way to Model Real-Time Systems Undesired Behaviors

Progress of Time

Essentially, the semantics of TA is obtained from paths in TS(TA)

For each path π = s0 →τ0 s1 →τ1 s2 →τ2 . . . define its execution time as

ExecTime(π) =
∑

τi∈IR>0

τi

For semantics of TA there are certain undesired paths / states in TS(TA)

• Time convergent paths (will be ignored)

• States which are timelocks (modeling flaw)

• Zeno paths (modeling flaw)

RT (ICS @ UIBK) week 5 17/49

Timed Automata - A Way to Model Real-Time Systems Undesired Behaviors

Time Convergent Paths
Race of Achilles (10m/s) versus some fast turtle (1m/s)
Turtle gets 100m in advance

Time elapsed Achilles Turtle

0s 0m 100m

10s 100m 110m

11s 110m 111m

Every time Achilles reaches previous point of turtle, the turtle is already a
bit ahead. Thus, the turtle wins!?!

Problem: The above claim is only valid for time-points < 11.111. . . s
Similar problem: time convergent paths π which satisfy ExecTime(π) < ω

s x < 1 t

a

Does TA satisfy formula A F a? Yes, time-convergent paths like
s → 1

2
s → 1

4
s → 1

8
. . . will be ignored. Only consider time divergent paths!

RT (ICS @ UIBK) week 5 18/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Timed Automata - A Way to Model Real-Time Systems Undesired Behaviors

Design Flaws

Usually, time-convergent paths cannot be avoided and will just be ignored
for model-checking

The following kinds of phenomena are seen as design flaws and the user
has to modify the timed automata to get rid of these phenomena

• A state s is a time-lock if there is no time-divergent path starting in s.
TA has a time-lock if there is some reachable state s of TS(TA) which
is a time-lock.
Problem of time-locks: Time cannot proceed beyond certain point

• A path π is zeno if it is time-convergent and contains infinitely many
actions a ∈ Act. TA is zeno if there is some (initial) path in TS(TA)
which is zeno.
Problem of zeno paths: infinitely actions in finite time, unrealistic

RT (ICS @ UIBK) week 5 19/49

Timed Automata - A Way to Model Real-Time Systems Undesired Behaviors

Dealing with Design Flaws

• First step: Apply algorithm to detect time-locks and zeno-paths

• Second step: Fix problem
Example: one way to avoid zeno paths is to add x > ”small value” as
additional guard to actions where additionally it is ensured that x is
reseted before

RT (ICS @ UIBK) week 5 20/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Timed CTL

Timed Computational Tree Logic (TCTL)
A TCTL-state formula Φ has the following form:

Φ ::= a | g | Φ ∧ Φ | ¬Φ | Eψ | Aψ

where a ∈ AP is atomic proposition and g ∈ CC (C ) is clock constraint,
and ψ is a TCTL-path formula

ψ ::= Φ U JΦ

where J ⊆ IR>0 is an interval with bounds in IN ∪ {∞}

The connectives ∨, true, . . . are derived as usual. Moreover,

F JΦ ≡ true U JΦ

E G JΦ ≡ ¬A F J¬Φ

A G JΦ ≡ ¬E F J¬Φ

RT (ICS @ UIBK) week 5 22/49

Timed CTL

Examples

off
on

x 6 2
sw off

x > 1

sw on

{x}

RT (ICS @ UIBK) week 5 23/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Timed CTL

Towards the Semantics of TCTL
• Already stated: only time-divergent paths are considered
• Compare

s1 → 1
6

s1 +
1

6
→ 7

6
s1 +

4

3
→a s2 →4 s2 →b s3 . . .

with

s1 → 4
3

s1 +
4

3
→a s2 →4 s2 + 4→b s3 . . .

Both paths are equivalent and we only consider the latter one where
consecutive delay-transitions are merged into one delay-transition

• Afterwards merge each delay-transition with the following discrete
transition to compressed path. Since actions are ignored by (T)CTL,
only denote the consumed time:

s1 → 4
3

s2 →4 s3 . . .

• If compressed path contains only finitely many discrete transitions
then use →1-steps until infinity: s1 → 4

3
s2 →1 s2 + 1→1 s2 + 2 . . .

RT (ICS @ UIBK) week 5 24/49

Timed CTL

Semantics of TCTL

Let TA = (Loc,Act,C , −→ , Loc0, Inv,AP, L). Then a state s of TS(TA)
has the form (`, α) where ` ∈ Loc and α is a clock-evaluation.

• s |= a iff a ∈ L(`)

• s |= g iff α |= g

• s |= ¬Φ iff s 6|= Φ

• s |= Φ ∧Ψ iff s |= Φ and s |= Ψ

• s |= Eϕ iff there is some time-divergent compressed path π: π |= ϕ

• s |= Aϕ iff for all time-divergent compressed paths π: π |= ϕ

RT (ICS @ UIBK) week 5 25/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Timed CTL

Semantics of TCTL (continued)
Let π be a time-divergent compressed path

π = s0 →d0 s1 →d1 s2 →d2 s3 . . .

Then π |= Φ U JΨ iff

• there is some i such that si + d |= Ψ for some d ∈ [0, di ] with

d +
i−1∑
k=0

dk ∈ J

and for all j 6 i and all d ′ ∈ [0, dj ] such that

d ′ +

j−1∑
k=0

dk 6 d +
i−1∑
k=0

dk

the relation sj + d ′ |= Φ ∨Ψ is valid

As usual, TA |= Φ iff all initial states satisfy Φ
RT (ICS @ UIBK) week 5 26/49

Timed CTL

Some Notes on TCTL

• There is no next-operator (X ) since it is unclear what the next point
in time should be

• The intervals need not be hit by state of path, e.g.,

s0 →1 s1 →4 s2 . . . |= F [2,3]a

provided that a ∈ L(s1)

• The semantics of until requires that the left formula is satisfied from
now on until the right- formula is satisfied, and not only from the start
of J onwards, e.g.,

s0 →1 s1 →4 s2 · · · 6|= a U [2,3]a

provided that a /∈ L(s0), a ∈ L(s1)

RT (ICS @ UIBK) week 5 27/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Timed CTL

More Notes on TCTL

In CTL: π |= Φ U Ψ . . . and for all j 6 i : sj |= Φ
In TCTL: π |= Φ U JΨ . . . and for all j 6 i : sj + d ′ |= Φ ∨Ψ

• Not a real difference in CTL since Φ U Ψ ≡CTL (Φ ∨Ψ) U Ψ

• Allows early satisfaction of right formula:

off

x 6 1

on

x 6 4
sw off

x > 3, {x}

sw on

{x}

TA |= A off U [1,2]on

RT (ICS @ UIBK) week 5 28/49

Timed CTL

Example

RT (ICS @ UIBK) week 5 29/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Checking for Timed CTL

Overview
Main question:

TA |= Φ

for timed automata TA and TCTL-state-formula Φ

• Know: TA |= Φ iff TS(TA) |= Φ

• First Problem: TS(TA) has infinitely many states

• Solution: Construct region transition system RTS (quotient of
TS(TA)) with finitely many states

• Second Problem: How to deal with intervals J in Ψ1 U JΨ2

• Solution: Add additional clock which allows to transform Φ into
CTL-formula Ψ

⇒ TA |= Φ iff RTS |= Ψ

⇒ TCTL-model checking boils down to CTL-model checking

• Restriction: From now only consider non-zeno timed automata

RT (ICS @ UIBK) week 5 31/49

Model Checking for Timed CTL Region Transition System

Idea of Region Transition System
Goal: Checking TA |= Φ. Let x be some clock of TA

• First observation: All clock constraints consists of atoms
x < / 6 / > / > c for some c ∈ IN

⇒ It does not matter whether x = 2.334 or x = 2.893, both values of x
satisfy the same clock constraints

⇒ Abstract from concrete value of x , only consider following intervals:

{0}, (0, 1), {1}, (1, 2), {2}, (2, 3), . . .

⇒ Far less values, but still infinitely many

• Second observation: There is some largest constant cx which occurs
in a clock constraints about x in TA and Φ

⇒ The following finite set of intervals suffices:

{0}, (0, 1), {1}, (1, 2), . . . , (cx − 1, cx), {cx}(cx ,∞)

By just looking at these intervals one can still decide all clock
constraints which occur in TA and Φ

RT (ICS @ UIBK) week 5 32/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Checking for Timed CTL Region Transition System

Example

off
on

x 6 2
sw off

x > 1

sw on

{x}
sw on, {x}

Clocks: C = {x , y}. Question: TA |= A F (y = 3 ∧ off)?

• States in TS(TA): (`, x , y) with ` ∈ {on, off}, x , y ∈ IR>0

• From TA and Φ extract cx = 2 and cy = 3

• States in region transition system RTS: (`, x , y) with ` ∈ {on, off}
and (x , y) is one of the following 48 regions (point, line segment, or
white area):

RT (ICS @ UIBK) week 5 33/49

Model Checking for Timed CTL Region Transition System

Delay Transitions in Region Transition System

• Have: finite region transition system, fine enough to decide clock
constraints

⇒ Possible to mimic discrete transitions within region transition system
• Guard of transition can be checked by region
• Resetting clocks can be done directly with regions
• Invariant of locations can be checked by region

• Region transition system is not fine enough to mimic delay transitions:

• Consider clocks x , y and region R =“x ∈ (0, 1) ∧ y ∈ (2, 3)”
• Want to compute the next region. Candidates:

x = 1 ∧ y ∈ (2, 3) or x = 1 ∧ y = 3 or x ∈ (0, 1) ∧ y = 3

• Problem: all three cases are possible when starting in R

x = 0.8, y = 2.3 or x = 0.7, y = 2.7 or x = 0.4, y = 2.9

• Solution: construct finer regions where additionally the fractional parts
of clock values are compared with 6

RT (ICS @ UIBK) week 5 34/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Checking for Timed CTL Region Transition System

Example

With refinement obtain 12 additional regions

RT (ICS @ UIBK) week 5 35/49

Model Checking for Timed CTL Region Transition System

Regions (Formally)

frac(d) denotes the fractional part of d , bdc denotes the integral part of d

Definition (Clock Equivalence, Region, Unbounded Region)

Let α, β ∈ C → IR>0 be clock valuations. Let cx , cy , . . . be the maximal
occurring constants. Then α and β are clock equivalent (α u β) iff one of
the following two conditions are satisfied

• for all x ∈ C : α(x) > cx and β(x) > cx

• for all x , y ∈ C where α(x), β(x) 6 cx and α(y), β(y) 6 cy the
following two conditions are satisfied:

• bα(x)c = bβ(x)c and frac(α(x)) = 0 iff frac(β(x)) = 0
• frac(α(x)) 6 frac(α(y)) iff frac(β(x)) 6 frac(β(y))

The regions are the equivalence classes of u
The unbounded region R∞ is the equivalence class of α (i.e, R∞ = [α]u)
where α(x) = cx + 1, for all x ∈ C

RT (ICS @ UIBK) week 5 36/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Checking for Timed CTL Region Transition System

Number of Regions
Let α be a clock valuation. The corresponding region is identified by

• integral parts α, i.e., by bα(x)c, bα(y)c, . . .∏
x∈C

cx + 1 possibilities

• being an natural number or not, i.e., by bits frac(α(x)) = 0, . . .

2|C | possibilities

• order of fractional parts, e.g., frac(α(x)) = frac(α(z)) < frac(α(y))

|C |! · 2|C |−1 possibilities

⇒ number of regions is bounded by

(
∏
x∈C

cx + 1) · 4|C | · |C |!

⇒ size of region transition system is exponential in number of clocks
RT (ICS @ UIBK) week 5 37/49

Model Checking for Timed CTL Region Transition System

Successor of a Region

For each region R there is a unique successor region succ(R):

• If R = R∞ then succ(R) = R∞

• If R 6= R∞ then succ(R) is the unique region R ′ such that R ′ 6= R
and for all α ∈ R:

∃d > 0 : (α + d ∈ R ′ and ∀0 6 d ′ 6 d : α + d ′ ∈ R ∪ R ′)

So, R ′ 6= R is the region that is visited next when starting in R

RT (ICS @ UIBK) week 5 38/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Checking for Timed CTL Region Transition System

Example

y

x

0 1 2 3

1

2

x = 0 ∧ 1 < y < 2 →succ 0 < x < 1 ∧ 1 < y < 2 ∧ frac(x) < frac(y)

→succ 0 < x < 1 ∧ y = 2

→succ 0 < x < 1 ∧ 2 < y < 3 ∧ frac(x) > frac(y)

→succ x = 1 ∧ 2 < y < 3

→succ 1 < x < 2 ∧ 2 < y < 3 ∧ frac(x) < frac(y)

→succ 1 < x < 2 ∧ y = 3

→succ 1 < x < 2 ∧ y > 3

→succ x = 2 ∧ y > 3

→succ R∞ : x > 2 ∧ y > 3

RT (ICS @ UIBK) week 5 39/49

Model Checking for Timed CTL Region Transition System

Region Transition System

Definition
Let TA = (Loc,Act,C , −→ , Loc0, Inv,AP, L) and TCTL-formula Φ be
given. Then RTS(TA,Φ) is the region transition system

RTS = (Loc× (C → IR>0/ u),→′, I ,AP ∪ CC (Φ), L′)

• C → IR>0/ u are the clock evaluations modulo u, i.e, the regions

• I = {(`, [α]u) | ` ∈ Loc0, α |= Inv(`)} where α(x) = 0 for all x ∈ C

• CC (Φ) are the clock-constraints that are occurring in Φ

• L′((`,R)) = L(`) ∪ {g ∈ CC (Φ) | R |= g}
• (`,R)→′ (`,R ′) if succ(R) = R ′ and R ′ |= Inv(`)

• (`,R)→′ (`′,R[D := 0]) if

• ` g :a,D−−−−→ `′ is transition in TA
• R |= g
• R[D := 0] |= Inv(`′)

RT (ICS @ UIBK) week 5 40/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Checking for Timed CTL Region Transition System

Remarks on Region Transition System

• R[D := 0] = {α[D := 0] | α ∈ R}

• R |= g iff for all α ∈ R : α |= g iff there exists α ∈ R : α |= g

⇒ There is no ambiguity in the labeling

• u needs values cx , cy , . . . . These are extracted from TA and Φ

• Clock constraints of Φ seen as TCTL-formula become atomic
propositions in RTS(TA,Φ)

RT (ICS @ UIBK) week 5 41/49

Model Checking for Timed CTL Region Transition System

Example

RT (ICS @ UIBK) week 5 42/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Checking for Timed CTL Region Transition System

Properties of Region Transition System

Recall: only timed automata are considered which are non-zeno

Theorem
TA has a time-lock iff RTS(TA, true) has a reachable terminal state

⇒ Directly yields method to check for time-locks

Theorem

TA |= Φ iff RTS(TA,Φ) |= Φ

(TS(TA) is bisimilar to RTS(TA,Φ) w.r.t. AP′ where AP′ does not contain
guards exceeding cx , cy , . . . )

⇒ Perform CTL-model checking on finite system to answer TA |= Φ

RT (ICS @ UIBK) week 5 43/49

Model Checking for Timed CTL Model Checking via CTL

One Remaining Problem

Now: standard CTL-model checking on RTS applicable to answer TA |= Φ

With this approach cover

Φ ::= a | g | Φ ∧ Φ | ¬Φ | Eψ | Aψ

where
ψ ::= Φ U Φ

However, unclear how to handle Φ U JΦ where J 6= [0,∞)

RT (ICS @ UIBK) week 5 44/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Checking for Timed CTL Model Checking via CTL

Elimination of Timing Parameters

Aim: Get rid of J in Φ U JΨ
Solution:

• Add fresh clock z to TA, obtain TA ] {z}
(z is not reseted, neither contained in guards nor in invariants)

⇒ z counts global elapsed time

• Lift Sat(Φ) and Sat(Ψ) from TA to TA ] {z}
• Replace Φ U JΨ by ξ := (Φ ∨Ψ) U (z ∈ J ∧Ψ)

Theorem (Elimination of Timing Parameters)

• s |= E Φ U JΨ iff s[{z} := 0] |= E ξ (pure CTL model-checking)

• s |= A Φ U JΨ iff s[{z} := 0] |= A ξ (pure CTL model-checking)

Here, s is state of RTS(TA, . . . ) and s[{z} := 0] is state of
RTS(TA ] {z}, . . . ). Note that for building RTS(TA ] {z}, . . . ) one also
has to consider the clock constraint z ∈ J which determines cz

RT (ICS @ UIBK) week 5 45/49

Model Checking for Timed CTL Model Checking via CTL

Example

off
on

x 6 1

x = 1: sw off

x = 1: sw on

{x}

parts of RTS(TA ] {z}, . . . z < 1 . . . )

off

x = 0

z = 0

A1

off

0 < x < 1

z = x

B1

off

x = 1

z = 1

C1

off

x > 1

z > 1

D1

on

x = 0

z = 1

E1

on

0 < x < 1

z > 1

F1

on

x = 1

z > 1

G1

off

x = 1

z > 1

C2

on

x = 0

z > 1

E2

RT (ICS @ UIBK) week 5 46/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Model Checking for Timed CTL Model Checking via CTL

Example

RT (ICS @ UIBK) week 5 47/49

Summary

Summary

• Often modeling is only adequate if real-time aspects can be expressed

• Complex real-time systems can be modeled via composition of timed
automata (containing clocks, guards, invariants)

• Timed CTL is extension of CTL where until-operator is equipped with
intervals

• Model-checking for timed CTL possible via region transition system
(but exponential in number of clocks)

RT (ICS @ UIBK) week 5 49/49

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Why Real-Time Systems are Important
	Timed Automata - A Way to Model Real-Time Systems
	Syntax and Composition
	Semantic
	Undesired Behaviors

	Timed CTL
	Model Checking for Timed CTL
	Region Transition System
	Model Checking via CTL

	Summary

