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Qutline

@ Why Real-Time Systems are Important

@ Timed Automata - A Way to Model Real-Time Systems
e Syntax and Composition
e Semantic
e Undesired Behaviors

@ Timed CTL

@ Model Checking for Timed CTL
o Region Transition System
o Model Checking via CTL

@ Summary

RT (ICS @ UIBK) week 5 2/49



http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss08/mc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Examples
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Clocks and Constraints

Clocks
e A clock can measure times € IR*?
e Clocks are usually written by x, y, ..., sets of clocks are C, D, ...

Clock-Constraints
A clock-constraint over clocks C is g € CC(C):

gi=x<cl|x<c|x>c|x=>clgNhg

where x € C,c € IN
e Extension to rational numbers possible (but simple to avoid)
o Constraints of form x — y < ¢, ... possible (but not considered)
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Timed Automata

Main ideas:
Global time

Add clock constraints to states (invariants) and transitions (guards)

Clocks can be reseted when performing transition

Time can elapse in states

Transitions are performed instantaneous

Parallel composition of timed automata via hand-shaking actions
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Timed Automata (formally)
A timed automata is octuple TA = (Loc, Act, C, —, Locy, Inv, AP, L)

Loc: set of locations

Act: set of actions

Locy: set of initial locations

AP: set of atomic propositions

L: labeling function, L : Loc — 24P

C: set of clocks

e —: transition relation, — C Loc x CC(C) x Act x 2 x Loc
e [nv: invariant assignment, Inv: Loc — CC(C)

State of transition system for timed automaton consists of location and
clock-evaluation o (o : C — IR??)

Meaning of s &30, 4. |f o satisfies g then one can perform a-step and all
clocks in D will be reseted to O.
Meaning of Inv(s) = g: One can only stay in s if « satisfies g

RT (ICS @ UIBK) week 5 8/49
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Example: Guards versus Location Invariants

Convention: Omit constraint “true” and empty set of reseted clocks

—>

14

O x>=>2:a{x}

N

3 DX>2ZQ,{X}

2<x<3:a{x}
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Example: Train-Gate-Controller

approach near
—> far >
{r} y<95
exit y > 2: enter
y
in
y <

coming down
x<1

going up
x <2

< down

SEENER)
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{z}
raise
3 exit
Z < {z}
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Composing Timed Automata

Definition

Given TA; = (LOC,', Act;, C;, — i, LOCO’,', Inv;, AP;, L,') where

APi NAP, = CGiN G = @. Let H C Acty N Acts be a set of
handshake-actions. Then the timed automaton TA;||y TAy is defined as

(LOCl X Locp, Act; U Actr, G U G, —, LOC0,1 X LOC0,2, Inv, AP; U AP, L)

o L((41,£2)) = L1(f1) U Lo(£2)
° lnv((€1,€2)) = lnvl(fl) A /nVQ(fz)
e — is defined as follows:

/y g1:a,D1 15/1 05 g2:a,D; ) /2 e
(21,52) g1/\g2:a,D:1UD; ( /17 /2)
(S 1 if ad H e 1 ifad H
(61, 62) 2221, (£, 02) (b1, 62) 22225 (14, 05)
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Example
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Semantic w.r.t. Clocks

e Given g € CC(C) and o : C — IR*? the meaning of o |= g is obvious
e For d € R”° and « define a + d as

(a+ d)(x) = alx) + d

e For D C C and « define a[D := 0] as

0 if x e D

a(x) otherwise

a[D = 0](x) = {

RT (ICS @ UIBK) week 5 13/49

Transition System for a Timed Automaton

For TA = (Loc, Act, C, — , Locy, Inv, AP, L) obtain transition system:
o States = Locations + Clock-Evaluation (infinite number of states)
o Discrete Transitions: perform (classical) transition

e Delay Transitions: let time pass and stay in a location

Formally: TS(TA) is the transition system (S, Act',—', 1, AP, L)
e S=locx (C— R
o Act = ActUIR??
o | ={({,a) |l e Locy,a = Inv(f)} where a(x) =0 for all x € C
o (b)) = L)

e —' is composed of two parts: discrete and delay transitions

RT (ICS @ UIBK) week 5 14/49
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Transitions of TS(TA)

Discrete Transition

(0, a) —, (¢, alD :=0]) iff

o (&30, yis transition in TA

caf=g
e a[D :=0] = InV({)

Delay Transition
(4, ) —4 (¢, a0+ d) iff
e a+d}Inv(f)and d € R?°

(This implies that o + d’ = Inv({) for all 0 < d’ < d)

RT (ICS @ UIBK) week 5 15/49
Example

sw._on

r ) on
q O
x <2
Sswoff
x>1
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Progress of Time

Essentially, the semantics of TA is obtained from paths in TS(TA)

For each path m = sy —;, s1 =1, S2 —, ... define its execution time as

ExecTime(m) = Z Ti

T,'EIR>O

For semantics of TA there are certain undesired paths / states in TS(TA)

e Time convergent paths (will be ignored)
o States which are timelocks (modeling flaw)
e Zeno paths (modeling flaw)
RT (ICS @ UIBK) week 5 17/49

Time Convergent Paths

Race of Achilles (10m/s) versus some fast turtle (1m/s)
Turtle gets 100m in advance
Time elapsed | Achilles | Turtle

Os Om | 100m
10s 100m | 110m
11s 110m | 111m

Every time Achilles reaches previous point of turtle, the turtle is already a
bit ahead. Thus, the turtle wins!?!

Problem: The above claim is only valid for time-points < 11.111...s
Similar problem: time convergent paths 7 which satisfy ExecTime(m) < w
a

Does TA satisfy formula AF a? Yes, time-convergent paths like

s—15—15—1 ... will be ignored. Only consider time divergent paths!
2 4 8

RT (ICS @ UIBK) week 5 18/49
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Design Flaws

Usually, time-convergent paths cannot be avoided and will just be ignored
for model-checking

The following kinds of phenomena are seen as design flaws and the user
has to modify the timed automata to get rid of these phenomena

e A state s is a time-lock if there is no time-divergent path starting in s.
TA has a time-lock if there is some reachable state s of TS(TA) which
is a time-lock.

Problem of time-locks: Time cannot proceed beyond certain point

e A path 7 is zeno if it is time-convergent and contains infinitely many

actions a € Act. TA is zeno if there is some (initial) path in TS(TA)

which is zeno.
Problem of zeno paths: infinitely actions in finite time, unrealistic

RT (ICS @ UIBK) week 5 19/49

Dealing with Design Flaws

e First step: Apply algorithm to detect time-locks and zeno-paths

e Second step: Fix problem
Example: one way to avoid zeno paths is to add x > "small value” as
additional guard to actions where additionally it is ensured that x is
reseted before

RT (ICS @ UIBK) week 5 20/49
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Timed Computational Tree Logic (TCTL)
A TCTL-state formula ® has the following form:

di=alg|PAD| =D |Ey|AY

where a € AP is atomic proposition and g € CC(C) is clock constraint,

and v is a TCTL-path formula
Y=o U’0
where J C IR?? is an interval with bounds in IN U {co}

The connectives V, true, ... are derived as usual. Moreover,

F/o = trueU’0
EG/o -AF/-0
AG/® = —-EF’/-0

RT (ICS @ UIBK) week 5
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X} on
SSswoft A7

x>1

—> off
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N
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Towards the Semantics of TCTL

e Already stated: only time-divergent paths are considered
e Compare
4
S1 =181+ - =181+ 239 =45 —pS3...
6 6 & 3
with
S1 —>4§1 Sl—l—g—>352 —4 599 +4 —pS3...
Both paths are equivalent and we only consider the latter one where
consecutive delay-transitions are merged into one delay-transition
o Afterwards merge each delay-transition with the following discrete
transition to compressed path. Since actions are ignored by (T)CTL,

only denote the consumed time:

S] —4 SO —4 S3...
3

e If compressed path contains only finitely many discrete transitions

then use —1-steps until infinity: s; 450 5195 +1—15+2...
RT (ICS @ UIBK) week 5 24/49

Semantics of TCTL

Let TA = (Loc, Act, C, —, Locg, Inv, AP, L). Then a state s of TS(TA)
has the form (¢, ) where ¢ € Loc and « is a clock-evaluation.

e sEaiffae L(¢)

e sEgiffaFEg

sEOiff s =P

sEPAVIffsEdands =WV

s = E ¢ iff there is some time-divergent compressed path 7: 7 = ¢

RT (ICS @ UIBK) week 5 25/49

s = A iff for all time-divergent compressed paths 7: 7 = ¢
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Semantics of TCTL (continued)

Let m be a time-divergent compressed path

T =35 —dy S1 —7d; S2 —dp S3- .-
Then 7 = ® U7 iff
e there is some i such that s; + d = WV for some d € [0, d;] with

i—1

d+> deeJ
k=0

and for all j < i and all d’ € [0, dj] such that

j—1 i—1
d+) de<d+ ) di
k=0 k=0

the relation s; + d' = ¢ v W is valid
As usual, TA = @ iff all initial states satisfy ®

RT (ICS @ UIBK) week 5 26/49

Some Notes on TCTL

e There is no next-operator (X) since it is unclear what the next point
in time should be

e The intervals need not be hit by state of path, e.g.,
S5o0 —1 51 —4 5 ... ): F[2’3]a

provided that a € L(s;)

e The semantics of until requires that the left formula is satisfied from
now on until the right- formula is satisfied, and not only from the start
of J onwards, e.g.,

provided that a ¢ L(sp), a € L(s1)

RT (ICS @ UIBK) week 5 27/49
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More Notes on TCTL

In CTL:r=®U V.. .andforallj<i:si=®
In TCTL: 1 =d U’V .. and forall j<i:sj+d EdVV

e Not a real difference in CTL since UV =c7, (PVV)U WV

o Allows early satisfaction of right formula:

sw_on
/\
off x} on
x<1 x <4
~swoff_~
x > 3,{x}
TA |= AoffU2on

RT (ICS @ UIBK) week 5 28/49
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Overview
Main question:
TAE O
for timed automata TA and TCTL-state-formula ¢
o Know: TAE @ iff TS(TA) = @
o First Problem: TS(TA) has infinitely many states

e Solution: Construct region transition system RTS (quotient of
TS(TA)) with finitely many states

e Second Problem: How to deal with intervals J in W, U7V,

e Solution: Add additional clock which allows to transform & into
CTL-formula W

TAE o iff RTS =V
TCTL-model checking boils down to CTL-model checking

e Restriction: From now only consider non-zeno timed automata

4
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ldea of Region Transition System
Goal: Checking TA = ¢. Let x be some clock of TA
e First observation: All clock constraints consists of atoms
x</</>=/>cforsomececN
= |t does not matter whether x = 2.334 or x = 2.893, both values of x
satisfy the same clock constraints
= Abstract from concrete value of x, only consider following intervals:

10},(0,1),{1},(1,2),{2},(2,3), ...

= Far less values, but still infinitely many

e Second observation: There is some largest constant ¢, which occurs
in a clock constraints about x in TA and ¢
= The following finite set of intervals suffices:

{0},(0,1),{1},(1,2),...,(cx — 1, &), {cx Hex, )

By just looking at these intervals one can still decide all clock

constraints which occur in TA and ¢
RT (ICS © UIBK) week 5 32/49
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Example

sw_on
{x} on
- X< 2 Dsw,on, {x}
SW_0
x>=1

Clocks: C ={x,y}. Question: TA = AF(y =3 A off)?

o States in TS(TA): (¢, x,y) with £ € {on, off}, x,y € IRZ°
e From TA and ® extract ¢, =2 and ¢, = 3

e States in region transition system RTS: (¢, x,y) with £ € {on, off}
and (x, y) is one of the following 48 regions (point, line segment, or
white area):

RT (ICS @ UIBK) week 5 33/49

Delay Transitions in Region Transition System

e Have: finite region transition system, fine enough to decide clock

constraints
= Possible to mimic discrete transitions within region transition system
e Guard of transition can be checked by region
e Resetting clocks can be done directly with regions
e |nvariant of locations can be checked by region

e Region transition system is not fine enough to mimic delay transitions:

o Consider clocks x,y and region R ="x € (0,1) Ay € (2,3)"
e Want to compute the next region. Candidates:

x=1Ay€(2,3) oo x=1Ay=3 o x€(0,1)Ay=3
e Problem: all three cases are possible when starting in R
x=08,y=23 or x=07,y=27 or x=04y=29

e Solution: construct finer regions where additionally the fractional parts
of clock values are compared with <

RT (ICS @ UIBK) week 5 34/49
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Example

With refinement obtain 12 additional regions

RT (ICS @ UIBK) week 5 35/49

Regions (Formally)

frac(d) denotes the fractional part of d, |d| denotes the integral part of d

Definition (Clock Equivalence, Region, Unbounded Region)

Let o, 3 € C — IRZ° be clock valuations. Let ¢, Cy, ... be the maximal
occurring constants. Then a and 3 are clock equivalent (a = [3) iff one of
the following two conditions are satisfied

o for all x € C: a(x) > ¢, and B(x) > cx
e for all x,y € C where a(x), 5(x) < ¢« and a(y), 5(y) < ¢, the
following two conditions are satisfied:
e |a(x)] =|6(x)] and frac(a(x)) = 0 iff frac(B(x)) =0
o frac(a(x)) < frac(a(y)) iff  frac(B(x)) < frac(B(y))
The regions are the equivalence classes of =~
The unbounded region R is the equivalence class of « (i.e, Ry = [a]x)
where a(x) = ¢x + 1, for all x € C

RT (ICS @ UIBK) W 36/49
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Number of Regions
Let o be a clock valuation. The corresponding region is identified by
e integral parts «, i.e., by [a(x)], |a(y)],...

H cx + 1 possibilities
xeC

e being an natural number or not, i.e., by bits frac(a(x)) =0, ...

olCl possibilities

e order of fractional parts, e.g., frac(a(x)) = frac(a(z)) < frac(a(y))
|C|1 - 2!€1=T possibilities
= number of regions is bounded by

(J] e +1) -4t |cp

xeC

= size of region transition system is exponential in number of clocks
SEENER) week 5 37/49

Successor of a Region

For each region R there is a unique successor region succ(R):
o If R = Ry then succ(R) = Ry

e If R # Ry then succ(R) is the unique region R’ such that R’ # R
and for all a € R:

dd>0:(a+deR andV0<d <d:a+d € RUR')

So, R’ # R is the region that is visited next when starting in R

RT (ICS @ UIBK) W 38/49
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Example

0 1 2 3
x=0AN1<y<?2 —see 0<Xx<1IAL1<y<2Afrac(x) < frac(y)

—suee O0<Xx<1Ay=2
—suce 0<x<1IA2<y<3Afrac(x) > frac(y)
—euce X=1AN2<y<3
—suce 1 <X<2AN2<y <3Afrac(x) < frac(y)
—suee 1< Xx<2Ay=3
—suce 1< Xx<2Ay>3
—suce X=2Ny >3

succ Roo i X>2ANy >3
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Region Transition System

Definition
Let TA = (Loc, Act, C, —, Locy, Inv, AP, L) and TCTL-formula ® be
given. Then RTS(TA, ®) is the region transition system

RTS = (Loc x (C - R”°/ =), ', I, APU CC(®), L)

e C — ]R>O/ ~ are the clock evaluations modulo =, i.e, the regions
I ={(([a]x) | £ € Locy,« = Inv(¢)} where a(x) =0 for all x € C

CC(®) are the clock-constraints that are occurring in ¢

L'((¢,R)) = L(H)u{g € CC(®) | R = g}
(4, R) =’ (¢, R') if succ(R) = R’ and R’ = Inv({)
e ({,R)—'(¢,R[D :=0)]) if

o (&30 pis transition in TA

el
e R[D:=0] [ Inv({)

RT (ICS @ UIBK) week 5 40/49
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Remarks on Region Transition System

e RID:=0]={a[D:=0]| a€R}

e REgiffforalla € R:a =g iffthereexistsa € R:alEg
= There is no ambiguity in the labeling

e ~ needs values ¢y, cy,.... These are extracted from TA and ¢

e Clock constraints of ® seen as TCTL-formula become atomic
propositions in RTS(TA, ®)

RT (ICS @ UIBK) week 5 41/49

Example
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Properties of Region Transition System

Recall: only timed automata are considered which are non-zeno

Theorem
TA has a time-lock iff RTS(TA, true) has a reachable terminal state

= Directly yields method to check for time-locks

Theorem
TAlE ® iff RTS(TA,®) = ¢

(TS(TA) is bisimilar to RTS(TA, ®) w.r.t. AP where AP’ does not contain
guards exceeding cx, Cy,...)
= Perform CTL-model checking on finite system to answer TA = &

RT (ICS @ UIBK) week 5 43/49

One Remaining Problem

Now: standard CTL-model checking on RTS applicable to answer TA = ¢

With this approach cover
Oi=a|g|PAND| D |EY|AY

where
Yvii=0oUd

However, unclear how to handle ® U /® where J # [0, 00)

44/49
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Elimination of Timing Parameters

Aim: Get rid of J in dU W
Solution:

o Add fresh clock z to TA, obtain TAW {z}
(z is not reseted, neither contained in guards nor in invariants)

= z counts global elapsed time
o Lift Sat(®) and Sat(V) from TA to TAW {z}
e Replace dU W by £ := (dVW)U(z€ JAWV)

Theorem (Elimination of Timing Parameters)

e sEEOUIV iff s[{z}:=01E=E¢ (pure CTL model-checking)
o sE=ADGUIV iff s[{z}:=0]}=A¢  (pure CTL model-checking)
Here, s is state of RTS(TA,...) and s[{z} := 0] is state of

RTS(TAwW {z},...). Note that for building RTS(TAW {z},...) one also
has to consider the clock constraint z € J which determines c,

RT (ICS @ UIBK) week 5 45/49

Example

x = 1: sw_on

U on
el

x = 1: sw_off

parts of RTS(TAwW {z},...z<1...)

7 7
7/ 7/
Bl // //
Al Cl b Dl b
off off off off
—> x=0 0<x<1 x=1 x>1 D
z=0 Z=X z=1 z>1
E1 1 Gl C2 E2
on on on off on
x=0 0<x<1 x=1 x=1 x=0
z=1

z>1 z>1 z>1 z>1
o \_/
7
/7
Ve
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Example
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Summary

Often modeling is only adequate if real-time aspects can be expressed

Complex real-time systems can be modeled via composition of timed
automata (containing clocks, guards, invariants)

Timed CTL is extension of CTL where until-operator is equipped with
intervals

Model-checking for timed CTL possible via region transition system
(but exponential in number of clocks)
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