Model Checking (VO)	SS 2008	LVA 703521
Woder Checking (VO)	55 2000	LVII 100021

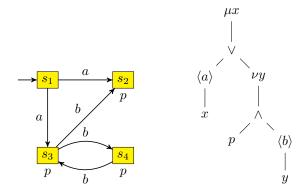
First name:	
Last name:	
Matriculation number:	

- Write your name and matriculation number on every page.
- Please answer all exercises in a readable and precise way. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

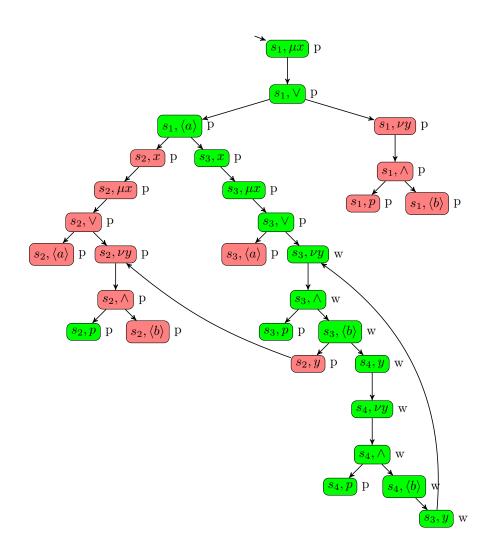
Exercise	Maximal points	Points
1	35	
2	30	
3	20	
4	15	
Σ	100	
Grade		

Exercise 1 (20 + 15 points)

Consider the following transition system and formula.

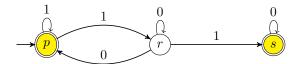


- Complete the game-graph which is depicted on the next page.
- Color the game-graph using the bottom-up coloring algorithm. Mark your nodes by (**g**)reen or (**r**)ed and additionally indicate whether a node was colored during a (**p**)ropagation-phase or whether it was colored since it remained (**w**)hite after propagation stopped. So, label each node with one of {**gp,rp,gw,rw**}.



Exercise 2 (18 + 12 points)

Consider the following NBA \mathcal{A} .



• Compute the A-equivalence classes by giving their shortest representatives and the corresponding transition profiles.

representative w	tp(w)
ϵ	$p \twoheadrightarrow_F p, r \twoheadrightarrow r, s \twoheadrightarrow_F s$
0	$r \twoheadrightarrow_F p, r \twoheadrightarrow r, s \twoheadrightarrow_F s$
1	$p \rightarrow_F p, p \rightarrow_F r, r \rightarrow_F s$
00	same as 0
01	$\mid r \twoheadrightarrow_F p, r \twoheadrightarrow_F r, r \twoheadrightarrow_F s$
10	same as 1
11	$p \twoheadrightarrow_F p, p \twoheadrightarrow_F r, p \twoheadrightarrow_F s$
010	same as 01
011	same as 01
110	same as 11
111	same as 11

• Construct the S1S-formula $\varphi_{\mathcal{A}}(\mathsf{a})$ using the construction from the lecture (and not the optimized version from the exercises).

$$\varphi_{\mathcal{A}} = \exists \mathsf{p} : \exists \mathsf{r} : \exists \mathsf{s}$$

$$\forall x : (\mathsf{p}(x) \lor \mathsf{r}(x) \lor \mathsf{s}(x)) \land \neg ((\mathsf{p}(x) \land \mathsf{r}(x)) \lor (\mathsf{p}(x) \land \mathsf{s}(x)) \lor (\mathsf{r}(x) \land \mathsf{s}(x))) \qquad \land \qquad \mathsf{partition}$$

$$\forall x : \exists y : x < y \land (\mathsf{p}(y) \lor \mathsf{s}(y)) \qquad \land \qquad \mathsf{accepting}$$

$$\mathsf{p}(0) \land \forall x : (\mathsf{p}(x) \land \mathsf{a}(x) \land \mathsf{p}(x')) \lor (\mathsf{p}(x) \land \mathsf{a}(x) \land \mathsf{r}(x')) \lor (\mathsf{r}(x) \land \neg \mathsf{a}(x) \land \mathsf{p}(x')) \lor \mathsf{run}$$

$$(\mathsf{r}(x) \land \neg \mathsf{a}(x) \land \mathsf{r}(x')) \lor \mathsf{run}$$

$$(\mathsf{r}(x) \land \mathsf{a}(x) \land \mathsf{s}(x')) \lor \mathsf{run}$$

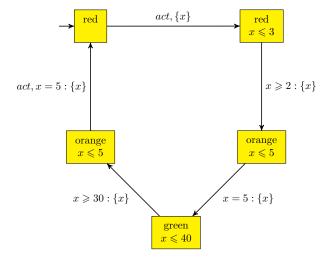
$$(\mathsf{s}(x) \land \neg \mathsf{a}(x) \land \mathsf{s}(x'))$$

Exercise 3 (20 points)

Consider a crossing with two traffic lights, each having phases red-orange-green-orange-red-.... Construct timed automata TA_i ($i \in \{1, 2\}$) for each of the traffic lights such that the following conditions are satisfied:

- The combination of the lights is safe, i.e., if one light is in a non-red state, then the other light shows red.
- Each green phase is between 30 and 40 seconds long.
- There is a delay between 2 and 3 seconds after the switch from orange to red on the one light, before the switch from red to orange is performed on the other light.
- Each orange phase takes exactly 5 seconds.
- Both lights show green infinitely often.
- TA_1 and TA_2 are symmetrical, only the initial state differs: TA_1 starts in a red state, TA_2 in a green one.

For symmetry reasons you only have write down TA_1 .



Exercise 4 (15 points)

The theorem of Knaster & Tarski can be lifted to infinite sets S. Essentially, one replaces $\tau^{|S|}(\varnothing)$ by

$$fp_{\tau} = \bigcup_{n \in \mathbb{N}} \tau^n(\varnothing).$$

Prove that if $\tau: 2^S \to 2^S$ is monotone then $fp_\tau \subseteq \tau(fp_\tau)$.

We prove that for all $a \in fp_{\tau}$ we also have $a \in \tau(fp_{\tau})$. So let $a \in fp_{\tau}$. Hence, there is some n such that $a \in \tau^{n}(\varnothing)$. Since $\tau^{0}(\varnothing) = \varnothing$ we know that n > 0 and thus, $a \in \tau(\tau^{n-1}(\varnothing))$. Since $\tau^{n-1}(\varnothing) \subseteq fp_{\tau}$ we know by monotonicity of τ that $a \in \tau(\tau^{n-1}(\varnothing)) \subseteq \tau(fp_{\tau})$.