First name:

Last name:

\qquad
Matriculation number:

- Write your name and matriculation number on every page.
- Please answer all exercises in a readable and precise way. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points
1	22	
2	24	
3	35	
4	19	
Σ	100	
Grade		

Exercise $1(18+4$ points)

Consider the following NBA \mathcal{A} (where labels are omitted).

- Fill the table which is obtained when using the algorithm of Yannakakis et. al. where successors are taken in order, i.e., successor q_{i} is taken before q_{j} iff $i<j$.
Here, you should at least write down a new line whenever the set of marked or flagged states are changed.
You may abbreviate q_{i} by i and you may use $\{1-4,6\}$ to indicate the set $\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{6}\right\}$, etc.

outer_dfs-stack	inner_dfs-stack	marked	flagged
ε	ε	\varnothing	\varnothing
q_{0}	ε	$\left\{q_{0}\right\}$	\varnothing
q_{1}, q_{0}	ε	$\left\{q_{0}, q_{1}\right\}$	\varnothing
q_{2}, q_{1}, q_{0}	ε	$\left\{q_{0}, q_{1}, q_{2}\right\}$	\varnothing
$q_{3}, q_{2}, q_{1}, q_{0}$	ε	$\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$	\varnothing
$q_{6}, q_{3}, q_{2}, q_{1}, q_{0}$	ε	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{6}\right\}$	\varnothing
$q_{9}, q_{6}, q_{3}, q_{2}, q_{1}, q_{0}$	ε	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{6}, q_{9}\right\}$	\varnothing
$q_{5}, q_{9}, q_{6}, q_{3}, q_{2}, q_{1}, q_{0}$	ε	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{5}, q_{6}, q_{9}\right\}$	\varnothing
$q_{8}, q_{5}, q_{9}, q_{6}, q_{3}, q_{2}, q_{1}, q_{0}$	ε	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{5}, q_{6}, q_{8}, q_{9}\right\}$	\varnothing
$q_{5}, q_{9}, q_{6}, q_{3}, q_{2}, q_{1}, q_{0}$	q_{5}	$\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{5}, q_{6}, q_{8}, q_{9}\right\}$	$\left\{q_{5}\right\}$

- Is there an accepting run of \mathcal{A} ? If so, which run is extracted by the algorithm?

The algorithm extracts the accepting run $q_{0} q_{1}\left(q_{2} q_{3} q_{6} q_{9} q_{5}\right)^{\omega}$.

Exercise $2(12+12$ points $)$

- Consider the following language:

$$
\binom{0}{1}^{*}\binom{0}{0}\left(\binom{1}{1}\binom{1}{0}\binom{1}{1}\right)^{\omega}
$$

Write down an F1S- or S1S-formula for this language and shortly explain your formula. If you used S1S, do you think it is possible with F1S?
x corresponds to the point in time where $\binom{0}{0}$ occurs.

$$
\begin{aligned}
\exists x: & \neg \mathrm{a}_{2}(x) \wedge \mathrm{a}_{2}\left(x^{\prime}\right) \wedge \neg \mathrm{a}_{2}\left(x^{\prime \prime}\right) \wedge \forall y: \\
& \left(x<y \Leftrightarrow \mathrm{a}_{1}(y)\right) \wedge\left(y<x \Rightarrow \mathrm{a}_{2}(y)\right) \wedge\left(\left(x<y \wedge \neg \mathrm{a}_{2}(y)\right) \Rightarrow\left(\mathrm{a}_{2}\left(y^{\prime}\right) \wedge \mathrm{a}_{2}\left(y^{\prime \prime}\right) \wedge \neg \mathrm{a}_{2}\left(y^{\prime \prime \prime}\right)\right)\right)
\end{aligned}
$$

- Intuitively construct NFAs \mathcal{A}_{1} and \mathcal{A}_{2} for the languages $a(b a)^{*}$ and $b a b^{*}$. Then construct an NBA \mathcal{A}_{3} for the language $\left(a(b a)^{*}\right) \cdot\left(b a b^{*}\right)^{\omega}$ using the construction from the lecture. Write down all three automata \mathcal{A}_{1}, \mathcal{A}_{2}, and \mathcal{A}_{3}.

Exercise 3 (34 +1 points)

Consider the following timed automaton.

- Construct the reachable part of the region transition system for this automaton. (It has 17 states.)

- Does the timed automata have a time-lock?

Since there are no reachable terminal states in the region transition system, the timed automata does not have a time-lock.

Exercise 4 (19 points)

Recall the definition of simulation equivalence \simeq :

- $T S_{1}=\left(S_{1}, \rightarrow_{1}, I_{1}, A P, L_{1}\right) \preceq T S_{2}=\left(S_{2}, \rightarrow_{2}, I_{2}, A P, L_{2}\right)$ if there is a simulation relation R for $T S_{1}$ and $T S_{2}$:
- for all $s \in I_{1}$ there exists $t \in I_{2}: s R t$
- whenever $s R t$ then $L_{1}(s)=L_{2}(t)$
- whenever $s R t$ and $s \rightarrow_{1} s^{\prime}$ then there exists $t^{\prime}: t \rightarrow_{2} t^{\prime}$ and $s^{\prime} R t^{\prime}$
- $\simeq=\preceq \cap \succeq$

Proof that \simeq is an equivalence relation (reflexive, symmetric, transitive). Whenever you define some simulation relation R then you do not have to formally show that R really is a simulation relation.

- $T S_{1} \simeq T S_{1}$, i.e., \simeq is reflexive: the reason is that $R=\left\{(s, s) \mid s \in S_{1}\right.$ is simulation relation for $T S_{1}$ and $T S_{1}$ proving both $T S_{1} \preceq T S_{1}$ and $T S_{1} \succeq T S_{1}$, and hence $T S_{1} \simeq T S_{1}$.
- Let $T S_{1} \simeq T S_{2}$. Then $T S_{1} \preceq T S_{2}$ and $T S_{1} \succeq T S_{2}$ and thus, $T S_{2} \simeq T S_{1}$. Thus, \simeq is symmetric.
- We first show that \preceq is transitive. So, let $T S_{1} \preceq T S_{2} \preceq T S_{3}$. Then there are simulations R_{12} for $T S_{1}$ and $T S_{2}$, and R_{23} for $T S_{2}$ and $T S_{3}$. Then $R=\left\{\left(s_{1}, s_{3}\right) \mid \exists s_{2}: s_{1} R_{12} s_{2}\right.$ and $\left.s_{2} R_{23} s_{3}\right\}$ is a simulation for $T S_{1}$ and $T S_{3}$. Thus, $T S_{1} \preceq T S_{3}$ which proves transitivity of \preceq.
Now let $T S_{1} \preceq \cap \succeq T S_{2} \preceq \cap \succeq T S_{3}$. This implies $T S_{1} \preceq T S_{2} \preceq T S_{3}$ and $T S_{1} \succeq T S_{2} \succeq T_{3}$ which by transitivity of \preceq implies $T S_{1} \preceq T S_{3}$ and $T S_{1} \succeq T S_{3}$, i.e., $T S_{1} \simeq T S_{3}$. Hence, \simeq is transitive.

