Model Checking (VO)	SS 2008	LVA 703521
First name:		
Last name:		
Matriculation number:		

- Write your name and matriculation number on every page.
- Please answer all exercises in a readable and precise way. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points
1	22	
2	24	
3	35	
4	19	
Σ	100	
Grade		

Exercise 1 (18 + 4 points)

Consider the following NBA \mathcal{A} (where labels are omitted).

• Fill the table which is obtained when using the algorithm of Yannakakis et. al. where successors are taken in order, i.e., successor q_i is taken before q_j iff i < j.

Here, you should at least write down a new line whenever the set of marked or flagged states are changed. You may abbreviate q_i by i and you may use $\{1 - 4, 6\}$ to indicate the set $\{q_1, q_2, q_3, q_4, q_6\}$, etc.

$outer_dfs$ -stack	${f inner_dfs-stack}$	marked	flagged
ε	ε	Ø	Ø
q_0	ε	$\{q_0\}$	Ø
q_1, q_0	ε	$\{q_0, q_1\}$	Ø
q_2, q_1, q_0	ε	$\{q_0, q_1, q_2\}$	Ø
q_3,q_2,q_1,q_0	ε	$\{q_0, q_1, q_2, q_3\}$	Ø
q_6, q_3, q_2, q_1, q_0	ε	$\{q_0, q_1, q_2, q_3, q_6\}$	Ø
$q_9, q_6, q_3, q_2, q_1, q_0$	ε	$\{q_0, q_1, q_2, q_3, q_6, q_9\}$	Ø
$q_5, q_9, q_6, q_3, q_2, q_1, q_0$	ε	$\{q_0, q_1, q_2, q_3, q_5, q_6, q_9\}$	Ø
$q_8, q_5, q_9, q_6, q_3, q_2, q_1, q_0$	ε	$\{q_0, q_1, q_2, q_3, q_5, q_6, q_8, q_9\}$	Ø
$q_5, q_9, q_6, q_3, q_2, q_1, q_0$	q_5	$\{q_0, q_1, q_2, q_3, q_5, q_6, q_8, q_9\}$	$\{q_5\}$

 Is there an accepting run of A? If so, which run is extracted by the algorithm? The algorithm extracts the accepting run q₀ q₁ (q₂ q₃ q₆ q₉ q₅)^ω.

Exercise 2 (12 + 12 points)

• Consider the following language:

$$\left(\begin{array}{c}0\\1\end{array}\right)^*\left(\begin{array}{c}0\\0\end{array}\right)\left(\left(\begin{array}{c}1\\1\end{array}\right)\left(\begin{array}{c}1\\0\end{array}\right)\left(\begin{array}{c}1\\1\end{array}\right)\right)^{\omega}$$

Write down an F1S- or S1S-formula for this language and shortly explain your formula. If you used S1S, do you think it is possible with F1S?

x corresponds to the point in time where $\begin{pmatrix} 0\\ 0 \end{pmatrix}$ occurs.

$$\begin{aligned} \exists x: \quad \neg \mathsf{a}_2(x) \land \mathsf{a}_2(x') \land \neg \mathsf{a}_2(x'') \land \forall y: \\ (x < y \Leftrightarrow \mathsf{a}_1(y)) \land (y < x \Rightarrow \mathsf{a}_2(y)) \land ((x < y \land \neg \mathsf{a}_2(y)) \Rightarrow (\mathsf{a}_2(y') \land \mathsf{a}_2(y'') \land \neg \mathsf{a}_2(y''))) \end{aligned}$$

• Intuitively construct NFAs \mathcal{A}_1 and \mathcal{A}_2 for the languages $a(ba)^*$ and bab^* . Then construct an NBA \mathcal{A}_3 for the language $(a(ba)^*) \cdot (bab^*)^{\omega}$ using the construction from the lecture. Write down all three automata \mathcal{A}_1 , \mathcal{A}_2 , and \mathcal{A}_3 .

Exercise 3 (34 + 1 points)

Consider the following timed automaton.

• Construct the reachable part of the region transition system for this automaton. (It has 17 states.)

• Does the timed automata have a time-lock?

Since there are no reachable terminal states in the region transition system, the timed automata does not have a time-lock.

Exercise 4 (19 points)

Recall the definition of simulation equivalence \simeq :

- $TS_1 = (S_1, \rightarrow_1, I_1, AP, L_1) \preceq TS_2 = (S_2, \rightarrow_2, I_2, AP, L_2)$ if there is a simulation relation R for TS_1 and TS_2 :
 - for all $s \in I_1$ there exists $t \in I_2$: sRt
 - whenever sRt then $L_1(s) = L_2(t)$
 - whenever sRt and $s \rightarrow_1 s'$ then there exists $t': t \rightarrow_2 t'$ and s'Rt'
- $\bullet \ \simeq \,=\, \preceq \cap \,\succeq \,$

Proof that \simeq is an equivalence relation (reflexive, symmetric, transitive). Whenever you define some simulation relation R then you do not have to formally show that R really is a simulation relation.

- $TS_1 \simeq TS_1$, i.e., \simeq is reflexive: the reason is that $R = \{(s,s) \mid s \in S_1 \text{ is simulation relation for } TS_1 \text{ and } TS_1 \text{ proving both } TS_1 \preceq TS_1 \text{ and } TS_1 \succeq TS_1, \text{ and hence } TS_1 \simeq TS_1.$
- Let $TS_1 \simeq TS_2$. Then $TS_1 \preceq TS_2$ and $TS_1 \succeq TS_2$ and thus, $TS_2 \simeq TS_1$. Thus, \simeq is symmetric.
- We first show that \leq is transitive. So, let $TS_1 \leq TS_2 \leq TS_3$. Then there are simulations R_{12} for TS_1 and TS_2 , and R_{23} for TS_2 and TS_3 . Then $R = \{(s_1, s_3) \mid \exists s_2 : s_1R_{12}s_2 \text{ and } s_2R_{23}s_3\}$ is a simulation for TS_1 and TS_3 . Thus, $TS_1 \leq TS_3$ which proves transitivity of \leq .

Now let $TS_1 \leq \cap \geq TS_2 \leq \cap \geq TS_3$. This implies $TS_1 \leq TS_2 \leq TS_3$ and $TS_1 \geq TS_2 \geq T_3$ which by transitivity of \leq implies $TS_1 \leq TS_3$ and $TS_1 \geq TS_3$, i.e., $TS_1 \simeq TS_3$. Hence, \simeq is transitive.