
OLCmputational
gic

Experiments in Verification
SS 2009

Christian Sternagel (VO)1

Computational Logic
Institute of Computer Science

University of Innsbruck

13 March 2009

1christian.sternagel@uibk.ac.at

Session 2 - Experiments in Verification Summary of Last Session

Exercises
length

I define a primitive recursive function length that computes the
length of a list

I prove "length(xs@ys) = length xs + length ys"

snoc

I define a primitive recursive function snoc that appends an element
at the end of a list (do not use @)

I prove "rev(x#xs) = snoc (rev xs) x"

replace

I define a primitive recursive function replace such that
replace x y zs replaces all occurrences of x in the list zs by y

I prove "rev(replace x y zs) = replace x y (rev zs)"
CS (ICS@UIBK) EVE 2/26

http://cl-informatik.uibk.ac.at

Session 2 - Experiments in Verification

This Time

Session 1
formal verification, Isabelle/HOL basics, functional programming in HOL

Session 2
simplification, function definitions, induction, calculational reasoning

Session 3
natural deduction, propositional logic, predicate logic

Session 4
sets, relations, inductively defined sets, advanced topics

CS (ICS@UIBK) EVE 3/26

Session 2 - Experiments in Verification Simplification

Term Rewriting

Example (Addition and Multiplication on Natural Numbers)

I a set of rules, also called a term rewrite system (TRS)

0 + y → y 0× y → 0

s(x) + y → s(x + y) s(x)× y → y + (x × y)

I ‘compute’ 1× 2

s(0)× s2(0) → s2(0) + (0× s2(0))
→ s2(0) + 0
→ s(s(0) + 0)
→ s(s(0 + 0))
→ s2(0)

CS (ICS@UIBK) EVE 4/26

Session 2 - Experiments in Verification Simplification

In Isabelle

datatype num = Zero | Succ num

notation Zero ("0")
notation Succ ("s’(_’)")

primrec add (infixl "+" 65)
where "(0::num) + y = y"

| "s(x) + y = s(x + y)"

primrec mul (infixl "×" 70)
where "(0::num) × y = 0"

| "s(x) × y = y + (x × y)"

CS (ICS@UIBK) EVE 5/26

Session 2 - Experiments in Verification Simplification

Explanatory Notes

I 0 is overloaded, hence we need type constraints

I use ’ within syntax annotations to escape characters with special
meaning, e.g., ’(for an opening parenthesis (special meaning: start
a group for pretty printing) or ’_ for an underscore (special
meaning: argument placeholder)

I you may omit the type of a function if it can be inferred
automatically

I to get symbols like × use X-Symbols (see next slide)

I you automatically get lemmas num.simps, add.simps, and
mul.simps

CS (ICS@UIBK) EVE 6/26

Session 2 - Experiments in Verification Simplification

X-Symbols

ASCII X-Symbol shown as ASCII X-Symbol shown as
=> \<Rightarrow> ⇒ ALL \<forall> ∀
--> \<longrightarrow> −→ EX \<exists> ∃
==> \<Longrightarrow> =⇒ & \<and> ∧
!! \<And>

∧
| \<or> ∨

== \<equiv> ≡ ~ \<not> ¬
~= \<noteq> 6= % \<lambda> λ
: \<in> ∈ * \<times> ×
~: \<notin> /∈ o \<circ> ◦
Un \<union> ∪ [| \<lbrakk> [[
Int \<inter> ∩ |] \<rbrakk>]]

Union \<Union>
⋃

<= \<subseteq> ⊆
Inter \<Inter>

⋂
< \<subset> ⊂

I activate via Proof-General → Options → X-Symbol

CS (ICS@UIBK) EVE 7/26

Session 2 - Experiments in Verification Simplification

Using Simplification Rules

Automatically

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))" by simp

Explicitly (unfolding)

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))"
unfolding add.simps mul.simps by (rule refl)

CS (ICS@UIBK) EVE 8/26

Session 2 - Experiments in Verification Simplification

Modifying the Simpset

I simpset is set of simplification rules currently in use

I adding a lemma to the simpset
declare 〈theorem-name〉[simp]

I deleting a lemma from the simpset
declare 〈theorem-name〉[simp del]

Example

declare add.simps[simp del]
lemma "0 + s(0) = s(0)"

CS (ICS@UIBK) EVE 9/26

Session 2 - Experiments in Verification Simplification

A More Complete Grammar for Proofs

proof
def
= prefix∗ proof method? statement∗ qed method?

| prefix∗ by method method?

prefix
def
= apply method
| using fact∗

| unfolding fact∗

statement
def
= fix variables
| assume proposition+

| (from fact+)? (show | have) proposition proof

proposition
def
= (label:)? "term"

fact
def
= label
| ‘term‘

CS (ICS@UIBK) EVE 10/26

Session 2 - Experiments in Verification Simplification

A Proof by Hand

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))"
proof -
have "s(s(0)) × s(s(0)) =

s(s(0)) + s(0) × s(s(0))"
unfolding mul.simps by (rule refl)

from this have "s(s(0)) × s(s(0)) =
s(s(0)) + (s(s(0)) + 0 × s(s(0)))"

unfolding mul.simps .
from this have "s(s(0)) × s(s(0)) =

s(s(0)) + (s(s(0)) + 0)"
unfolding mul.simps .

from this show ?thesis unfolding add.simps .
qed

CS (ICS@UIBK) EVE 11/26

Session 2 - Experiments in Verification Simplification

The simp Method

General Format
simp 〈list of modifiers〉

Modifiers

I add: 〈list of theorem names〉
I del: 〈list of theorem names〉
I only: 〈list of theorem names〉

Example

lemma "s(0) × s(0) = s(0)"
by (simp only: add.simps mul.simps)

CS (ICS@UIBK) EVE 12/26

Session 2 - Experiments in Verification Simplification

A General Format for Stating Theorems

theorem
def
= kind goal
| kind name : goal
| kind [attributes]: goal
| kind name[attributes]: goal

kind
def
= theorem | lemma | corollary

goal
def
= (fixes variables)? (assumes prop+)? shows prop+

| prop+

prop
def
= (label:)? "term"

CS (ICS@UIBK) EVE 13/26

Session 2 - Experiments in Verification Simplification

Example

lemma some_lemma[simp]:
fixes A :: "bool" (* ‘A’ has type ‘bool’ *)

assumes AnA: "A ∧ A" (* give this fact the name ‘AnA’ *)
shows "A"

using AnA by simp

CS (ICS@UIBK) EVE 14/26

Session 2 - Experiments in Verification Simplification

Assumptions

I by default assumptions are used as simplification rules +
assumptions are simplified themselves

lemma

assumes "xs@zs = ys@xs" and "[]@xs = []@[]"
shows "ys = zs"

using assms by simp

I this can lead to nontermination

lemma

assumes "∀x. f x = g(f(g x))"
shows "f [] = f [] @ []"

using assms by simp

CS (ICS@UIBK) EVE 15/26

Session 2 - Experiments in Verification Simplification

The simp Method (cont’d)

More Modifiers

I (no_asm) assumptions are ignored

I (no_asm_simps) assumptions are not simplified themselves

I (no_asm_use) assumptions are simplified but not added to
simpset

CS (ICS@UIBK) EVE 16/26

Session 2 - Experiments in Verification Simplification

Tracing

I set Isabelle → Settings → Trace Simplifier

I useful to get a feeling for simplification rules

I see which rules are applied

I find out why simplification loops

CS (ICS@UIBK) EVE 17/26

Session 2 - Experiments in Verification Simplification

Digression – Finding Theorems

Start Search

I either by keyboard shortcut Ctrl + C,Ctrl + F, or

I clicking the find-icon (a magnifying glass)

Search Criteria

I a number in parenthesis specifies how menu results should be shown

I a pattern in double quotes specifies the term to be searched for

I a pattern may contain wild cards ‘_’, and type constraints

I precede a pattern by simp: to only search for theorems that could
simplify the specified term at the root

I to search for part of a name use name: "〈some string〉"
I negate a search criterion by prefixing a minus, e.g., -name:

CS (ICS@UIBK) EVE 18/26

Session 2 - Experiments in Verification Function Definitions

Example

fun fib :: "nat => nat"
where "fib 0 = Suc 0"

| "fib(Suc 0) = Suc 0"
| "fib(Suc(Suc n)) = fib n + fib(Suc n)"

Lemma
0 < fib n

CS (ICS@UIBK) EVE 19/26

Session 2 - Experiments in Verification Function Definitions

Abbreviations

I this: the previous proposition proved or assumed

I then: from this

I hence: then have

I thus: then show

I with 〈facts〉: from 〈facts〉 this

CS (ICS@UIBK) EVE 20/26

Session 2 - Experiments in Verification Function Definitions

The Command fun

Some Notes

I in principle arbitrary pattern matching on lhss

I patterns are matched top to bottom

I fun tries to prove termination automatically (current method:
lexicographic orders)

I use function instead of fun to provide a manual termination prove

I for further information: isatool doc functions

CS (ICS@UIBK) EVE 21/26

Session 2 - Experiments in Verification Calculational Reasoning

Additional Commands

I also: to apply transitivity automatically

I finally: to reconsider first lhs

I . . .: to abbreviate previous rhs

CS (ICS@UIBK) EVE 22/26

Session 2 - Experiments in Verification Calculational Reasoning

An Example Proof (Base Case)

primrec sum :: nat => nat
where "sum 0 = 0"

| "sum(Suc n) = Suc n + sum n"

lemma "sum n = (n*(Suc n)) div (Suc(Suc 0))"
proof (induct n)
case 0 show ?case by simp
next

CS (ICS@UIBK) EVE 23/26

Session 2 - Experiments in Verification Calculational Reasoning

An Example Proof (Step Case)

case (Suc n)
hence IH: "sum n = (n*(Suc n)) div (Suc(Suc 0))" .
have "sum(Suc n) = Suc n + sum n" by simp
also have ". . . = Suc n + ((n*(Suc n)) div (Suc(Suc 0)))"
unfolding IH by simp

also have ". . . = ((Suc(Suc 0)*Suc n) div Suc(Suc 0)) +
((n*(Suc n)) div Suc(Suc 0))" by arith

also have ". . . = (Suc(Suc 0)*Suc n + n*(Suc n)) div
Suc(Suc 0)" by arith

also have ". . . = ((Suc(Suc 0) + n)*Suc n) div Suc(Suc 0)"
unfolding add_mult_distrib by simp

also have ". . . = (Suc(Suc n) * Suc n) div Suc(Suc 0)"
by simp

finally show ?case by simp
qed

CS (ICS@UIBK) EVE 24/26

Session 2 - Experiments in Verification Calculational Reasoning

An Example Proof (Notes)

I cases are named by the corresponding datatype constructors

I ?case is an abbreviation installed for the current goal in each case
of an induction proof

I case 0 sets up the assumption corresponding to the base case (i.e.,
none)

I case (Suc n) sets up the corresponding assumption

fix n assume "sum n = (n*Suc n) div Suc(Suc 0)

I arith is a decision procedure for Presburger Arithmetic

I . abbreviates by assumption

CS (ICS@UIBK) EVE 25/26

Session 2 - Experiments in Verification Calculational Reasoning

Exercises

http://isabelle.in.tum.de/exercises/arith/powSum/ex.pdf

CS (ICS@UIBK) EVE 26/26

http://isabelle.in.tum.de/exercises/arith/powSum/ex.pdf

	Session 2 - Experiments in Verification
	Summary of Last Session
	Simplification
	Function Definitions
	Calculational Reasoning

