

Experiments in Verification SS 2009

Christian Sternagel (VO)¹

Computational Logic Institute of Computer Science University of Innsbruck

13 March 2009

¹christian.sternagel@uibk.ac.at

Session 2 - Experiments in Verification

Exercises length

- define a primitive recursive function length that computes the length of a list
- prove "length(xs@ys) = length xs + length ys"

snoc

- define a primitive recursive function snoc that appends an element at the end of a list (do not use @)
- prove "rev(x#xs) = snoc (rev xs) x"

replace

- define a primitive recursive function replace such that replace x y zs replaces all occurrences of x in the list zs by y
- prove "rev(replace x y zs) = replace x y (rev zs)"

This Time

Session 1

formal verification, Isabelle/HOL basics, functional programming in HOL

Session 2

simplification, function definitions, induction, calculational reasoning

Session 3 natural deduction, propositional logic, predicate logic

Session 4 sets, relations, inductively defined sets, advanced topics

Term Rewriting

Example (Addition and Multiplication on Natural Numbers)

► a set of rules, also called a term rewrite system (TRS)

$$\begin{array}{ll} 0+y \to y & 0 \times y \to 0 \\ {\sf s}(x)+y \to {\sf s}(x+y) & {\sf s}(x) \times y \to y + (x \times y) \end{array}$$

• 'compute' 1×2

$$\begin{array}{ll} \mathsf{s}(0) \times \mathsf{s}^2(0) & \to \mathsf{s}^2(0) + (0 \times \mathsf{s}^2(0)) \\ & \to \mathsf{s}^2(0) + 0 \\ & \to \mathsf{s}(\mathsf{s}(0) + 0) \\ & \to \mathsf{s}(\mathsf{s}(0 + 0)) \\ & \to \mathsf{s}^2(0) \end{array}$$

In Isabelle

```
datatype num = Zero | Succ num

notation Zero ("0")

notation Succ ("s'(_')")

primrec add (infixl "+" 65)

where "(0::num) + y = y"

| "s(x) + y = s(x + y)"

primrec mul (infixl "\times" 70)

where "(0::num) \times y = 0"

| "s(x) \times y = y + (x \times y)"
```


Explanatory Notes

- 0 is overloaded, hence we need type constraints
- use ' within syntax annotations to escape characters with special meaning, e.g., '(for an opening parenthesis (special meaning: start a group for pretty printing) or '_ for an underscore (special meaning: argument placeholder)
- you may omit the type of a function if it can be inferred automatically
- to get symbols like \times use X-Symbols (see next slide)
- you automatically get lemmas num.simps, add.simps, and mul.simps

X-Symbols

ASCII	X-Symbol	shown as	ASCII	X-Symbol	shown as
=>	\ <rightarrow></rightarrow>	\Rightarrow	ALL	\ <forall></forall>	\forall
>	<pre>\<longrightarrow></longrightarrow></pre>	\longrightarrow	EX	\ <exists></exists>	Э
==>	<pre>\<longrightarrow></longrightarrow></pre>	\implies	&	$\langle and \rangle$	\wedge
!!	$\langle And \rangle$	\wedge		\ <or></or>	\vee
==	\ <equiv></equiv>	=	~	< not >	_
~=	\ <noteq></noteq>	\neq	%	\ <lambda></lambda>	λ
:	$\leq in >$	\in	*	\ <times></times>	×
~:	\ <notin></notin>	¢	0	\ <circ></circ>	0
Un	\ <union></union>	U	El	\ <lbrakk></lbrakk>	l II I
Int	\ <inter></inter>	\cap]]	\ <rbrakk></rbrakk>]
Union	\ <union></union>	U	<=	<subseteq></subseteq>	\subseteq
Inter	\ <inter></inter>	\cap	<	\ <subset></subset>	C

EVE

▶ activate via Proof-General \rightarrow Options \rightarrow X-Symbol

CS (ICS@UIBK)

Session 2 - Experiments in Verification

Using Simplification Rules

Automatically

lemma " $s(s(0)) \times s(s(0)) = s(s(s(s(0))))$ " by simp

Explicitly (unfolding)

7/26

Modifying the Simpset

- simpset is set of simplification rules currently in use
- adding a lemma to the simpset
 declare (theorem-name) [simp]
- deleting a lemma from the simpset
 declare (theorem-name) [simp del]

Example

```
declare add.simps[simp del]
lemma "0 + s(0) = s(0)"
```

CS (ICS@UIBK)		EVE	9/26
Session 2 - Experiments in Ve	erificatio	on Sirr	plification
A More Com	plet	e Grammar for Proofs	
proof	def 	prefix* proof method? statement* qed method? prefix* by method method?	1
prefix	def 	<pre>apply method using fact* unfolding fact*</pre>	
statement	def 	<pre>fix variables assume proposition+ (from fact+)? (show have) proposition proof</pre>	
proposition	def —	(label:) [?] "term"	
fact	def 	label ' term '	

A Proof by Hand

 CS (ICS@UIBK)
 EVE
 11/26

 Session 2 - Experiments in Verification
 Simplification

 The simp Method

 General Format

 simp ⟨list of modifiers⟩

Modifiers

- ▶ add: *(list of theorem names)*
- ► del: *(list of theorem names)*
- ▶ only: *(list of theorem names)*

Example

```
lemma "s(0) × s(0) = s(0)"
by (simp only: add.simps mul.simps)
```

A General Format for Stating Theorems


```
lemma some_lemma[simp]:
    fixes A :: "bool" (* 'A' has type 'bool' *)
    assumes AnA: "A ^ A" (* give this fact the name 'AnA' *)
    shows "A"
using AnA by simp
```

Simplification

Assumptions

 by default assumptions are used as simplification rules + assumptions are simplified themselves

```
lemma
  assumes "xs@zs = ys@xs" and "[]@xs = []@[]"
   shows "ys = zs"
using assms by simp
```

this can lead to nontermination

```
lemma
    assumes "∀x. f x = g(f(g x))"
    shows "f [] = f [] @ []"
using assms by simp
```


The simp Method (cont'd)

More Modifiers

- (no_asm) assumptions are ignored
- (no_asm_simps) assumptions are not simplified themselves
- (no_asm_use) assumptions are simplified but not added to simpset

Tracing

- ▶ set Isabelle \rightarrow Settings \rightarrow Trace Simplifier
- useful to get a feeling for simplification rules
- ▶ see which rules are applied
- find out why simplification loops

Digression – Finding Theorems

Start Search

- either by keyboard shortcut Ctrl+C,Ctrl+F, or
- clicking the find-icon (a magnifying glass)

Search Criteria

- ▶ a number in parenthesis specifies how menu results should be shown
- ▶ a pattern in double quotes specifies the term to be searched for
- ► a pattern may contain wild cards '_', and type constraints
- precede a pattern by simp: to only search for theorems that could simplify the specified term at the root
- ▶ to search for part of a name use name: "⟨*some string*⟩"
- negate a search criterion by prefixing a minus, e.g., -name:

Example

```
fun fib :: "nat => nat"
where "fib 0 = Suc 0"
    | "fib(Suc 0) = Suc 0"
    | "fib(Suc(Suc n)) = fib n + fib(Suc n)"
```

Lemma

0 < fib n

- this: the previous proposition proved or assumed
- **then**: **from** this
- hence: then have
- ▶ thus: then show
- with $\langle facts \rangle$: from $\langle facts \rangle$ this

The Command fun

Some Notes

- in principle arbitrary pattern matching on lhss
- patterns are matched top to bottom
- fun tries to prove termination automatically (current method: lexicographic orders)
- use function instead of fun to provide a manual termination prove
- ▶ for further information: isatool doc functions

- also: to apply transitivity automatically
- finally: to reconsider first lhs
- ▶ ...: to abbreviate previous rhs

An Example Proof (Base Case)

CS (ICS@UIBK)

EVE

An Example Proof (Step Case)

23/26

An Example Proof (Notes)

- cases are named by the corresponding datatype constructors
- ?case is an abbreviation installed for the current goal in each case of an induction proof
- case 0 sets up the assumption corresponding to the base case (i.e., none)
- **case** (Suc n) sets up the corresponding assumption

fix n assume "sum n = (n*Suc n) div Suc(Suc 0)

- arith is a decision procedure for Presburger Arithmetic
- abbreviates by assumption

Exercises

http://isabelle.in.tum.de/exercises/arith/powSum/ex.pdf