Experiments in Verification

 SS 2009Christian Sternagel (VO) ${ }^{1}$

Computational Logic
Institute of Computer Science
University of Innsbruck
13 March 2009
${ }^{1}$ christian.sternagel@uibk.ac.at

Exercises

- define a primitive recursive function length that computes the length of a list
- prove "length(xs@ys) = length xs + length ys"

snoc

- define a primitive recursive function snoc that appends an element at the end of a list (do not use ©)
- prove "rev(x\#xs) = snoc (rev xs) x"
replace
- define a primitive recursive function replace such that replace x y zs replaces all occurrences of x in the list zs by y
- prove "rev(replace x y zs) = replace x y (rev zs)"

This Time

Session 1
formal verification, Isabelle/HOL basics, functional programming in HOL Session 2
simplification, function definitions, induction, calculational reasoning
Session 3
natural deduction, propositional logic, predicate logic
\section*{Session 4}
sets, relations, inductively defined sets, advanced topics

Term Rewriting

Example (Addition and Multiplication on Natural Numbers)

- a set of rules, also called a term rewrite system (TRS)

$$
\left.\begin{array}{rlrl}
0+y & \rightarrow y & 0 \times y & \rightarrow 0 \\
\mathrm{~s}(x)+y & \rightarrow \mathrm{~s}(x+y) & \mathrm{s}(x) & \times y
\end{array}\right)
$$

- 'compute' 1×2

$$
\begin{aligned}
\mathrm{s}(0) \times \mathrm{s}^{2}(0) & \rightarrow \mathrm{s}^{2}(0)+\left(0 \times \mathrm{s}^{2}(0)\right) \\
& \rightarrow \mathrm{s}^{2}(0)+0 \\
& \rightarrow \mathrm{~s}(\mathrm{~s}(0)+0) \\
& \rightarrow \mathrm{s}(\mathrm{~s}(0+0)) \\
& \rightarrow \mathrm{s}^{2}(0)
\end{aligned}
$$

In Isabelle

```
datatype num = Zero | Succ num
notation Zero ("O")
notation Succ ("s'(_')")
```

```
primrec add (infixl "+" 65)
```

primrec add (infixl "+" 65)
where "(0::num) + y = y"
where "(0::num) + y = y"
| "s(x) + y = s(x + y)"

```
    | "s(x) + y = s(x + y)"
```

primrec mul (infixl "×" 70)
where " (0::num) $\times \mathrm{y}=0$ "
| "s(x) $\quad \times \mathrm{y}=\mathrm{y}+(\mathrm{x} \times \mathrm{y}) \mathrm{l}$

Explanatory Notes

- 0 is overloaded, hence we need type constraints
- use ' within syntax annotations to escape characters with special meaning, e.g., ' (for an opening parenthesis (special meaning: start a group for pretty printing) or ' _ for an underscore (special meaning: argument placeholder)
- you may omit the type of a function if it can be inferred automatically
- to get symbols like \times use X -Symbols (see next slide)
- you automatically get lemmas num.simps, add.simps, and mul.simps

X-Symbols

ASCII	X-Symbol	shown as	ASCII	X-Symbol	shown as
=>	\<Rightarrow>	\Rightarrow	ALL	\<forall>	\forall
-->	\<longrightarrow>	\longrightarrow	EX	\<exists>	\exists
==>	\<Longrightarrow>	\longrightarrow	\&	\<and>	\wedge
! !	\<And>	\wedge	I	\<or>	\checkmark
=	\<equiv>	A	~	\<not>	\neg
~	\<noteq>	\neq	\%	\<lambda>	λ
:	\<in>	ϵ	*	\<times>	\times
\sim	\<notin>	\notin	\bigcirc	\<circ>	-
Un	\<union>	\cup	[1]	\<lbrakk>	[1]
Int	\<inter>	\cap	$1]$	\<rbrakk>	】
Union	\<Union>	\cup	<	\<subseteq>	\subseteq
Inter	\<Inter>	\bigcirc	<	\<subset>	C

- activate via Proof-General \rightarrow Options \rightarrow X-Symbol

Using Simplification Rules

Automatically
lemma "s(s(0)) $\times s(s(0))=s(s(s(s(0)))) "$ by simp
Explicitly (unfolding)
lemma "s(s(0)) $\times s(s(0))=s(s(s(s(0))) "$ unfolding add.simps mul.simps by (rule refl)

Modifying the Simpset

－simpset is set of simplification rules currently in use
－adding a lemma to the simpset declare 〈theorem－name〉［simp］
－deleting a lemma from the simpset declare 〈theorem－name〉［simp del］

Example

```
declare add.simps[simp del]
```

lemma＂ 0 ＋s（0）＝s（0）＂

A More Complete Grammar for Proofs
proof $\stackrel{\text { def }}{=}$ prefix＊proof method？statement＊qed method？ prefix＊by method method？
prefix $\stackrel{\text { def }}{=}$ apply method
using fact＊ unfolding fact＊
statement $\stackrel{\text { def }}{=} \mathrm{fix}$ variables assume proposition ${ }^{+}$
（from fact ${ }^{+}$）？（show｜have）proposition proof
proposition $\stackrel{\text { def }}{=}(\text { label：})^{?}$＂term＂

$$
\begin{aligned}
\text { fact } & \stackrel{\text { def }}{=} \text { label } \\
& \mid \text { 'term' }
\end{aligned}
$$

A Proof by Hand

```
lemma "s(s(0)) \(\times s(s(0))=s(s(s(s(0)))) "\)
proof -
    have "s(s(0)) \(\times s(s(0))=\)
                \(\mathrm{s}(\mathrm{s}(0))+\mathrm{s}(0) \times \mathrm{s}(\mathrm{s}(0)) "\)
        unfolding mul.simps by (rule refl)
    from this have "s(s(0)) \(\times s(s(0))=\)
                        \(s(s(0))+(s(s(0))+0 \times s(s(0))) "\)
```

 unfolding mul.simps .
 from this have "s(s(0)) \(\times s(s(0))=\)
 \(s(s(0))+(s(s(0))+0) "\)
 unfolding mul.simps .
 from this show ?thesis unfolding add.simps .
 qed

The simp Method

General Format
simp 〈list of modifiers〉
Modifiers

- add：〈list of theorem names〉
- del：〈list of theorem names〉
- only：〈list of theorem names〉

Example

lemma＂s（0）$\times \mathrm{s}(0)=\mathrm{s}(0)$＂
by（simp only：add．simps mul．simps）

A General Format for Stating Theorems

```
theorem 年 kind goal
    | kind name: goal
    kind [attributes]: goal
    kind name[attributes]: goal
    kind \stackrel{def theorem | lemma | corollary}{=}
```



```
        prop+
prop 年㧨 (label:)? "term"
```

lemma some＿lemma［simp］：
fixes A ：：＂bool＂（＊＇A＇has type＇bool＇＊）
assumes AnA：＂A \wedge A＂（＊give this fact the name＇AnA＇＊） shows＂A＂
using AnA by simp

Assumptions

- by default assumptions are used as simplification rules + assumptions are simplified themselves
lemma

```
            assumes "xs@zs = ys@xs" and "[]@xs = []@[]"
            shows "ys = zs"
using assms by simp
```

- this can lead to nontermination

lemma

assumes " $\forall \mathrm{x}$. $\mathrm{f} \mathrm{x}=\mathrm{g}(\mathrm{f}(\mathrm{g} \mathrm{x}))$ "
shows "f [] = f [] @ []"
using assms by simp

The simp Method (cont'd)

More Modifiers

- (no_asm) assumptions are ignored
- (no_asm_simps) assumptions are not simplified themselves
- (no_asm_use) assumptions are simplified but not added to simpset

Tracing

- set Isabelle \rightarrow Settings \rightarrow Trace Simplifier
- useful to get a feeling for simplification rules
- see which rules are applied
- find out why simplification loops

Digression - Finding Theorems

Start Search

- either by keyboard shortcut Ctrl + C,Ctrl + F, or
- clicking the find-icon (a magnifying glass)

Search Criteria

- a number in parenthesis specifies how menu results should be shown
- a pattern in double quotes specifies the term to be searched for
- a pattern may contain wild cards '_', and type constraints
- precede a pattern by simp: to only search for theorems that could simplify the specified term at the root
- to search for part of a name use name: "〈some string〉"
- negate a search criterion by prefixing a minus, e.g., -name:

```
fun fib :: "nat => nat"
where "fib 0 = Suc 0"
    "fib(Suc 0) = Suc 0"
    "fib(Suc(Suc n)) = fib n + fib(Suc n)"
```

Lemma
$0<f i b n$

Abbreviations

- this: the previous proposition proved or assumed
- then: from this
- hence: then have
- thus: then show
- with \langle facts \rangle : from \langle facts \rangle this

The Command fun

Some Notes

- in principle arbitrary pattern matching on lhss
- patterns are matched top to bottom
- fun tries to prove termination automatically (current method: lexicographic orders)
- use function instead of fun to provide a manual termination prove
- for further information: isatool doc functions

Additional Commands

- also: to apply transitivity automatically
- finally: to reconsider first lhs
- to abbreviate previous rhs

An Example Proof (Base Case)

```
primrec sum :: nat => nat
where "sum 0 = 0"
    | "sum(Suc n) = Suc \(n+\operatorname{sum} n "\)
lemma "sum \(\mathrm{n}=(\mathrm{n} *(\operatorname{Suc} \mathrm{n}))\) div (Suc (Suc 0))"
proof (induct n)
    case 0 show ?case by simp
next
```


An Example Proof (Step Case)

```
case (Suc n)
hence IH: "sum n = (n*(Suc n)) div (Suc(Suc 0))" .
have "sum(Suc n) = Suc n + sum n" by simp
also have "... = Suc n + ((n*(Suc n)) div (Suc(Suc 0)))"
    unfolding IH by simp
also have "... = ((Suc(Suc 0)*Suc n) div Suc(Suc 0)) +
                        ((n*(Suc n)) div Suc(Suc 0))" by arith
also have "... = (Suc(Suc 0)*Suc n + n*(Suc n)) div
    Suc(Suc 0)" by arith
also have "... = ((Suc(Suc 0) + n)*Suc n) div Suc(Suc 0)"
    unfolding add_mult_distrib by simp
also have "... = (Suc(Suc n) * Suc n) div Suc(Suc 0)"
    by simp
finally show ?case by simp
qed
```


An Example Proof (Notes)

- cases are named by the corresponding datatype constructors
- ?case is an abbreviation installed for the current goal in each case of an induction proof
- case 0 sets up the assumption corresponding to the base case (i.e., none)
- case (Suc n) sets up the corresponding assumption fix n assume "sum $n=(n * S u c n)$ div Suc (Suc 0)
- arith is a decision procedure for Presburger Arithmetic
- . abbreviates by assumption

Exercises

http://isabelle.in.tum.de/exercises/arith/powSum/ex.pdf

