
Algorithms & Datastructures

Laboratory Exercise Sheet 3

Wolfgang Pausch <wolfgang.pausch@uibk.ac.at>
Heiko Studt <heiko.studt@uibk.ac.at>

René Thiemann <rene.thiemann@uibk.ac.at>
Tomas Vitvar <tomas.vitvar@uibk.ac.at>

March 24th, to be discussed on April 13th

1

Exercise 1) The Master Theorem Consider the recurrence equations

• T1(n) = 2 ∗ T (n2) + n3

• T2(n) = 2 ∗ T (n2) + n ∗ log(n)

• T3(n) = 16 ∗ T (n4) + n2

• T4(n) = 2 ∗ T (n4) +
√
n

For i ∈ {1, 2, 3, 4}, either

• find the solution Ti(n) = Θ(. . .) using the master theorem

• or show why using the master theorem for Ti is not possible.

Hint: You may assume that nε /∈ O(log(n)) for all ε > 0.

2

Exercise 1) Solution

• Given is: T1(n) = 2 ∗ T (n2) + n3. Thus a = 2, b = 2 and f(n) = n3. log22 = 1 and
n3 ∈ Ω(n1+ε) for some ε > 0. Furthermore, 2 ∗ (n2)3 = 2 ∗ n3

8 ≤ n3, thus case 3 of the
master theorem may be applied. The solution is thus T (n) = Θ(n3).

• Here, T2(n) = 2 ∗ T (n2) + n ∗ log(n) is given. Thus a = 2, b = 2 and f(n) = n ∗ log(n).
log22 = 1. Obviously, f(n) = n ∗ log(n) /∈ O(n1−ε), so case 1 is not applicable. Similarily,
f(n) = n ∗ log(n) /∈ Θ(n1), so case 2 is not applicable either.

Thus, for having a chance to apply the master theorem using case 3, f(n) ∈ Ω(n1+ε) for
some ε > 0 must be true. This means, we have to find a c > 0 and a n0 ∈ N such that for
all n ≥ n0 the following is true: c∗n1+ε ≤ n∗ log(n). In other words, c∗nε ≤ log(n) would
be required. As nε /∈ O(log(n)), case 3 is not applicable either, so the master theorem
cannot be applied for T2(n).

• Given is T3(n) = 16 ∗ T (n4) + n2. Here, a = 16, b = 4 and f(n) = n2 = Θ(n2). log416 = 2.
Thus case 2 is applicable and T (n) = Θ(n2 ∗ log(n)).

• Finally, T4(n) = 2 ∗ T (n4) + n
1
2 . So, a = 2, b = 4 and f(n) = n

1
2 ∈ Θ(n

1
2). Because

log42 = 1
2 , case 2 is applicable here as well, so T (n) = Θ(n

1
2 ∗ log(n)).

3

Exercise 2) MinMax-Calculation Let A be an array of size n. If you want to find both
the smallest and the biggest value inside A, one straightforward way is scanning the algorithm
twice, the first time for finding the smallest value, the second time for finding the biggest value.
Obviously, this algorithm involves 2n− 2 comparisons between array elements.

1. Implement a divide and conquer algorithm which calculates both the minimum and the
maximum of A using less than 2n− 2 comparisons between array elements. Assume that
here, n can have any arbitrary value ≥ 0. React to the special case that n = 0 in an
appropriate way.

2. Test your implementation. Write down (and use for a test) a set of test arrays which tests
all relevant cases in your opinion.

3. Now we assume that n = 2m is a power of two. Prove that your algorithm needs less than
2n− 2 comparisons between array elements. It might be useful to guess the exact number
of comparisons and then prove this formally by induction on m.

Hint: You can use the following code skeletons:

MinMaxInfo.java
class MinMaxInfo {

int minValue;

int maxValue;

MinMaxInfo(int minValue , int maxValue) {

this.minValue = minValue;

this.maxValue = maxValue;

}

}

MinMax.java
public class MinMax {

public static void main(String [] args) {

int[] testArray = {1,1};

MinMaxInfo result = calculateMinMax(testArray);

System.out.println("Minimum is " + result.minValue + "; maximum is "

+ result.maxValue);

}

static MinMaxInfo calculateMinMax(int[] values) {

throw new RuntimeException("add code here");

}

static MinMaxInfo calculateMinMax(int[] values , int minIndex , int

numberOfIndices) {

throw new RuntimeException("add code here");

}

}

4

Exercise 2) Solution

1. Treat the array as binary tree. For trees of height 2, one comparison is sufficient since the
element which is not the smaller one is always the bigger one and vice versa. For higher
trees, minimum must be compared with minimum and maximum with maximum. This in
total results in 3

2 ∗ n− 2 comparisons.

Source code:

MinMaxInfo.java
class MinMaxInfo {

int minValue;

int maxValue;

MinMaxInfo(int minValue , int maxValue) {

this.minValue = minValue;

this.maxValue = maxValue;

}

}

5

MinMax.java
public class MinMax {

public static void main(String [] args) {

int[] testArray = {1,1};

MinMaxInfo result = calculateMinMax(testArray);

System.out.println("Minimum is " + result.minValue + "; maximum

is " + result.maxValue);

}

static MinMaxInfo calculateMinMax(int[] values) {

return calculateMinMax(values , 0, values.length);

}

static MinMaxInfo calculateMinMax(int[] values , int minIndex , int

numberOfIndices) {

if (numberOfIndices == 0) {

throw new RuntimeException("No zero -length arrays supported

.");

} else if (numberOfIndices == 1) {

// called for just one value , so this value is min and max.

return new MinMaxInfo(values[minIndex], values[minIndex]);

} else if (numberOfIndices == 2) {

// called for two values , so the value which is not the

smaller one is the bigger one

if (values[minIndex] < values[minIndex + 1]) {

return new MinMaxInfo(values[minIndex], values[minIndex

+ 1]);

} else {

return new MinMaxInfo(values[minIndex + 1], values[

minIndex]);

}

} else {

// called for more than two values , so we need a recursive

call

int numberOfIndicesFirstCall = numberOfIndices / 2;

int minIndexSecondCall = minIndex +

numberOfIndicesFirstCall;

int numberOfIndicesSecondCall = numberOfIndices -

numberOfIndicesFirstCall;

MinMaxInfo resultFirstCall = calculateMinMax(values ,

minIndex , numberOfIndicesFirstCall);

MinMaxInfo resultSecondCall = calculateMinMax(values ,

minIndexSecondCall , numberOfIndicesSecondCall);

int minValue;

if (resultFirstCall.minValue < resultSecondCall.minValue) {

minValue = resultFirstCall.minValue;

} else {

minValue = resultSecondCall.minValue;

}

int maxValue;

if (resultFirstCall.maxValue > resultSecondCall.maxValue) {

maxValue = resultFirstCall.maxValue;

} else {

maxValue = resultSecondCall.maxValue;

}

return new MinMaxInfo(minValue , maxValue);

}

}

}

6

2. For example, test using the following arrays:

• The empty array (we expect some error here, since the minimum of an empty array
is undefined)

• An array of size 1, e.g. (11)

• An array of size 2, e.g. (4, 17)

• An array of size 3, e.g. (3, 1, 4)

• An array of size 4 with just equal values, e.g. (4, 4, 4, 4)

• Some bigger array, size not a power of two, e.g. 1, 3, 4, 3, 2, 4, 67, 3, 4, 1, 3, 4, 4, 4, 6, 2, 4, 3, 1

3. Let n = 2h and c(h) the needed number of key comparisons. We show that the number
of comparisons for c(h) = 3

2 · 2
h − 2 for all h ≥ 1 by induction over h. (And hence, the

algorithm needs 3
2 · n− 2 comparisons.)

• h = 1: Then n = 21, thus c(1) = 1 = 3
2 ∗ 2− 2.

• h → h+ 1: Then c(h+ 1) = 2 ∗ c(h) + 2 = 2 ∗ (3
2 ∗ 2h − 2) + 2 = 3

2 ∗ 2h+1 − 2, since
we compare the results of two sub-trees t1 and t2, i.e. calculate mint1 < mint2 and
maxt1 < maxt2 .

7

Exercise 3) Interpolation search You know interpolation search from the slides.

1. Implement it.

2. You know from the slides that it has worst case complexity O(n). Find an example where
it actually needs such a large number of operations.

8

Exercise 3) Solution

1. Implementation:

InterpolationSearch.java
public class InterpolationSearch {

static int interpolationSearch(int[] a, int x) {

int left = 0;

int right = a.length - 1;

if (right < 0 || x < a[0] || x > a[right]) {

return -1;

}

while (left <= right) {

int al = a[left];

int ar = a[right];

int middle = left + (int) ((x-al) / (double) (ar - al) * (

right - left));

if (x < a[middle]) {

right = middle - 1;

if (x > a[right]) {

return -1;

}

} else if (x == a[middle]) {

return middle;

} else {

left = middle + 1;

if (x < a[left]) {

return -1;

}

}

}

return -1;

}

}

2. Consider the array 0, . . . , 0, n of length n and a call of interpolationSearch(a,1).
The right-value will always stay at n− 1, whereas the left-value will be 0, 1, 2, . . . , n− 1.

9

Exercise 4) Heap-Sort

1. Let v be a level inside a heap as defined in the lecture. (The root has level 0, the children
of the root have level 1, their children 2 and so on. . . .)

How many elements n(v) can level v have at maximum? Prove your results by induction.

2. Sort the numbers 5, 3, 17, 10, 84, 19, 6, 22, 9 using HeapSort. Show the heap both as array
and as tree after each run of both downHeap and swap.

10

Exercise 4) Solution

1. Level v can have at most 2v elements. Proof:

• n(0) = 1 = 20 since the root alone is one element.

• v → v + 1: n(v + 1) ≤ 2 ∗ n(v) = 2 ∗ 2v = 2v+1 since each node can have at most two
children.

2. Starting with a heap represented by the array 5, 3, 17, 10, 84, 19, 6, 22, 9 first do the following
downHeap steps:

• Call downHeap for the 10, now we have 5, 3, 17, 22, 84, 19, 6, 10, 9.

• Call it for the 17, now we have 5, 3, 19, 22, 84, 17, 6, 10, 9.

• Call it for the 3, now we have 5, 84, 19, 22, 3, 17, 6, 10, 9.

• Call it for the 5, now we have 84, 22, 19, 10, 3, 17, 6, 5, 9.

Now, perform the following swap and downHeap steps:

• Swap 84 and 9, now we have 9, 22, 19, 10, 3, 17, 6, 5 | 84. The remaining heap is the
array up to the 5. Now call downHeap for the 9, now we have 22, 10, 19, 9, 3, 17, 6, 5 |
84.

• Swap 22 and 5, now we have 5, 10, 19, 9, 3, 17, 6 | 22, 84. Now call downHeap for the
5, resulting in 19, 10, 17, 9, 3, 5, 6 | 22, 84.

• Swap 19 and 6, now we have 6, 10, 17, 9, 3, 5 | 19, 22, 84. Call downHeap for the 6,
resulting in 17, 10, 6, 9, 3, 5 | 19, 22, 84.

• Swap 17 and 5, now we have 5, 10, 6, 9, 3 | 17, 19, 22, 84. Call downHeap for the 5,
resulting in 10, 9, 6, 5, 3 | 17, 19, 22, 84.

• Swap 10 and 3, now we have 3, 9, 6, 5 | 10, 17, 19, 22, 84. Call downHeap for the 3,
resulting in 9, 5, 6, 3 | 10, 17, 19, 22, 84.

• Swap 9 and 3, now we have 3, 5, 6 | 9, 10, 17, 19, 22, 84. Call downHeap for the 3,
resulting in 6, 5, 3 | 9, 10, 17, 19, 22, 84.

• Swap 6 and 3, now we have 3, 5 | 6, 9, 10, 17, 19, 22, 84. Call downHeap for the 3,
resulting in 5, 3 | 6, 9, 10, 17, 19, 22, 84.

• Finally swap 5 and 3, resulting in 3, 5, 6, 9, 10, 17, 19, 22, 84 and we are finished.

11

