

Experiments in Verification SS 2010

Christian Sternagel (VO)¹

Computational Logic Institute of Computer Science University of Innsbruck

19 March 2010

¹christian.sternagel@uibk.ac.at

Exercises length

- define a primitive recursive function length that computes the length of a list
- ▶ prove "length (xs @ ys) = length xs + length ys"

snoc

- define a primitive recursive function snoc that appends an element at the end of a list (do not use @)
- prove "rev (x # xs) = snoc (rev xs) x"

replace

- define a primitive recursive function replace such that replace x y zs replaces all occurrences of x in the list zs by y
- ▶ prove "rev (replace x y zs) = replace x y (rev zs)"

This Time

Session 1

formal verification, Isabelle/HOL basics, functional programming in HOL

Session 2

simplification, function definitions, induction, calculational reasoning

Session 3

natural deduction, propositional logic, predicate logic

Session 4

sets, relations, inductively defined sets, advanced topics

Term Rewriting

Example (Addition and Multiplication on Natural Numbers)

▶ a set of rules, also called a term rewrite system (TRS)

$$0 + y \rightarrow y \qquad 0 \times y \rightarrow 0$$

s(x) + y \rightarrow s(x + y) \qquad s(x) \times y \rightarrow y + (x \times y)

ightharpoonup 'compute' 1×2

$$s(0) \times s^{2}(0) \longrightarrow s^{2}(0) + (0 \times s^{2}(0))$$

 $\rightarrow s^{2}(0) + 0$
 $\rightarrow s(s(0) + 0)$
 $\rightarrow s(s(0 + 0))$
 $\rightarrow s^{2}(0)$

In Isabelle

```
datatype num = Zero | Succ num
notation Zero ("0")
notation Succ ("s'(_')")
primrec add :: "num \Rightarrow num \Rightarrow num" (infix1 "+" 65)
where
  "(0::num) + y = y" |
  "s(x) + y = s(x + y)"
primrec mul :: "num \Rightarrow num" (infixl "\times" 70)
where
  "(0::num) \times y = 0" |
  "s(x) \times y = y + (x \times y)"
```

Explanatory Notes

- ▶ 0 is overloaded, hence we need type constraints
- use ' within syntax annotations to escape characters with special meaning, e.g., '(for an opening parenthesis (special meaning: start a group for pretty printing) or '_ for an underscore (special meaning: argument placeholder)
- you may omit the type of a function if it can be inferred automatically
- ▶ to get symbols like × use Unicode Tokens (see next slide)
- you automatically get lemmas num.simps, add.simps, and mul.simps

Unicode Tokens

ASCII	Unicode Token	shown as	ASCII	Unicode Token	shown as
=>	\ <rightarrow></rightarrow>	\Rightarrow	ALL	\ <forall></forall>	A
>	\ <longrightarrow></longrightarrow>	\longrightarrow	EX	\ <exists></exists>	3
==>	\ <longrightarrow></longrightarrow>	\Longrightarrow	&	\leq	\wedge
!!	\ <and></and>	\wedge	I	\ <or></or>	V
==	\ <equiv></equiv>	=	~	\ <not></not>	_
~=	\ <noteq></noteq>	≠	%	\ <lambda></lambda>	λ
:	\ <in></in>	\in	*	\ <times></times>	×
~:	\ <notin></notin>	∉	0	\ <circ></circ>	0
Un	\ <union></union>	U	[]	\ <lbrakk></lbrakk>	
Int	\ <inter></inter>	\cap	[]	\ <rbrakk></rbrakk>	$ar{\mathbb{I}}$
Union	\ <union></union>	U	<=	\ <subseteq></subseteq>	\subseteq
Inter	\ <inter></inter>	\cap	<	\ <subset></subset>	C

lacktriangle activate via Proof-General ightarrow Options ightarrow Unicode Tokens

CS (ICS@UIBK) EVE 7/2

Using Simplification Rules

Automatically

```
lemma s(s(0)) \times s(s(0)) = s(s(s(s(0)))) by simp
```

Explicitly (unfolding)

```
lemma "s(s(0)) \times s(s(0)) = s(s(s(s(0))))"
unfolding add.simps mul.simps by (rule refl)
```

- simpset is set of simplification rules currently in use
- ▶ adding a lemma to the simpset declare ⟨theorem-name⟩ [simp]
- ▶ deleting a lemma from the simpset declare ⟨theorem-name⟩[simp del]

Example

```
declare add.simps[simp del]
lemma "0 + s(0) = s(0)"
```

A More Complete Grammar for Proofs

```
proof \stackrel{\text{def}}{=} prefix* proof method? statement* qed method?
                     prefix* by method method?
       prefix \stackrel{\text{def}}{=} \mathbf{apply} \ method
          using fact*
unfolding fact*
 statement \stackrel{\text{def}}{=} fix variables
                    | assume proposition<sup>+</sup>
| (from fact<sup>+</sup>)? (show | have) proposition proof
proposition \stackrel{\text{def}}{=} (label:)? "term"
          fact \stackrel{\text{def}}{=} label \ | `term'
```

A Proof by Hand

```
lemma "s(s(0)) \times s(s(0)) = s(s(s(s(0))))"
proof -
  have "s(s(0)) \times s(s(0)) =
        s(s(0)) + s(0) \times s(s(0))"
    unfolding mul.simps by (rule refl)
  from this have "s(s(0)) \times s(s(0)) =
                   s(s(0)) + (s(s(0)) + 0 \times s(s(0)))"
    unfolding mul.simps .
  from this have "s(s(0)) \times s(s(0)) =
                   s(s(0)) + (s(s(0)) + 0)"
    unfolding mul.simps .
  from this show ?thesis unfolding add.simps .
qed
```

The simp Method

General Format simp (list of modifiers)

Modifiers

- ▶ add: ⟨list of theorem names⟩
- ▶ del: ⟨list of theorem names⟩
- ▶ only: ⟨list of theorem names⟩

Example

```
lemma "s(s(0)) \times s(s(0)) = s(s(s(s(0))))"
by (simp only: add.simps mul.simps)
```

A General Format for Stating Theorems

```
theorem \stackrel{\text{def}}{=} kind goal
               kind name: goal
                  kind [attributes]: goal
                    kind name [attributes]: goal
     kind \stackrel{\text{def}}{=} \text{theorem} \mid \text{lemma} \mid \text{corollary}
     goal \stackrel{\text{def}}{=} (fixes \ variables)^? (assumes \ prop^+)^? shows \ prop^+
    prop \stackrel{\text{def}}{=} (label:)^? "term"
```

Example

```
lemma some_lemma[simp]:
    fixes A :: "bool" (* 'A' has type 'bool' *)
    assumes AnA: "A \ A" (* give this fact the name 'AnA' *)
    shows "A"
using AnA by simp
```

Assumptions

by default assumptions are used as simplification rules + assumptions are simplified themselves

```
lemma
  assumes "xs @ zs = ys @ xs" and "[] @ xs = [] @ []"
    shows "ys = zs"
using assms by simp
```

this can lead to nontermination

```
lemma
   assumes "∀x. f x = g (f (g x))"
   shows "f [] = f [] @ []"
using assms by simp
```

The simp Method (cont'd)

More Modifiers

- (no_asm) assumptions are ignored
- ► (no_asm_simps) assumptions are not simplified themselves
- (no_asm_use) assumptions are simplified but not added to simpset

Tracing

- ightharpoonup set Isabelle ightarrow Settings ightarrow Trace Simplifier
- useful to get a feeling for simplification rules
- see which rules are applied
- find out why simplification loops

Digression - Finding Theorems

Start Search

- either by keyboard shortcut Ctrl + C,Ctrl + F, or
- clicking the find-icon (a magnifying glass)

Search Criteria

- ▶ a number in parenthesis specifies how menu results should be shown
- a pattern in double quotes specifies the term to be searched for
- ▶ a pattern may contain wild cards '_', and type constraints
- precede a pattern by simp: to only search for theorems that could simplify the specified term at the root
- ▶ to search for part of a name use name: "⟨some string⟩"
- ▶ negate a search criterion by prefixing a minus, e.g., -name:

Example

Abbreviations

▶ this: the previous proposition proved or assumed

▶ then: from this

▶ hence: then have

▶ thus: then show

▶ with ⟨facts⟩: from ⟨facts⟩ this

The Command fun

Some Notes

- in principle arbitrary pattern matching on left-hand sides
- patterns are matched top to bottom
- ▶ **fun** tries to prove termination automatically (current method: lexicographic orders)
- use function instead of fun to provide a manual termination prove
- ▶ for further information: isabelle doc functions

Additional Commands

- ▶ also: to apply transitivity automatically
- finally: to reconsider first left-hand side
- ▶ ...: to abbreviate previous right-hand side

An Example Proof (Base Case)

An Example Proof (Step Case)

```
case (Suc n)
 hence IH: "sum n = (n*(Suc n)) div (Suc(Suc 0))".
 have "sum(Suc n) = Suc n + sum n" by simp
 also have "... = Suc n + ((n*(Suc n)) div (Suc(Suc 0)))"
   unfolding IH by simp
 also have "... = ((Suc(Suc 0)*Suc n) div Suc(Suc 0)) +
            ((n*(Suc n)) div Suc(Suc 0))" by arith
 also have "... = (Suc(Suc 0)*Suc n + n*(Suc n)) div
            Suc(Suc 0)" by arith
 also have "... = ((Suc(Suc 0) + n)*Suc n) div Suc(Suc 0)"
   unfolding add_mult_distrib by simp
 also have "... = (Suc(Suc n) * Suc n) div Suc(Suc 0)"
   by simp
 finally show ?case by simp
qed
```

An Example Proof (Notes)

- cases are named by the corresponding datatype constructors
- ?case is an abbreviation installed for the current goal in each case of an induction proof
- ► case 0 sets up the assumption corresponding to the base case (i.e., none)
- ► case (Suc n) sets up the corresponding assumption
 fix n assume "sum n = (n*Suc n) div Suc(Suc 0)"
- arith is a decision procedure for Presburger Arithmetic
- abbreviates by assumption

Exercises

http://isabelle.in.tum.de/exercises/arith/powSum/ex.pdf

CS (ICS@UIBK) EVE 26/26