Model Checking (VO)	SS 2009	LVA 703521
First name:		
Last name:		
Matriculation number	:	

- Please answer all exercises in a readable and precise way. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points
1	25	
2	25	
3	30	
4	20	
Σ	100	
Grade		

Exercise 1 ((2 + 4 + 6 + 8) + 5 points)

Consider the following formula φ .

• For each call $touch(\alpha)$ where $\alpha \in \{z, v, u, x\}$ write down the set of variables that are invalidated and the set of variables that are reseted.

touch(z) :	$Valid := Valid \setminus$	Reset :=
touch(v) :	$Valid := Valid \setminus$	Reset:=
touch(u) :	$Valid := Valid \setminus$	Reset:=
touch(x):	$Valid := Valid \setminus$	Reset:=

• Determine $\llbracket \varphi \rrbracket$. Just give the result (and apply the algorithm in a lazy way)

Exercise 2 (18 + 3 + 4 points)

Consider the following NBA \mathcal{A} over $\Sigma = \{a, b\}$.

• Compute the \mathcal{A} -equivalence classes by constructing the transition profile automaton.

- Let $\mathcal{B} = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$. Describe \mathcal{B} in your own words.
- From the lecture we know that $\mathcal{B} = \bigcup_{(i,j) \in I} U_i \cdot U_j^{\omega}$ for some index-set I where U_1, \ldots, U_n are the $\sim_{\mathcal{A}}$ equivalence-classes that correspond to the transition profiles. In this examples there is some j and I such that $\mathcal{B} = \bigcup_{i \in I} U_i \cdot U_j^{\omega}$. What is the transition profile that corresponds to U_j ?

Exercise 3 (30 points)

Consider the following timed automaton TA.

Formally apply the algorithm for TCTL-model checking to determine $TA \models \Phi$ where $\Phi = \mathsf{E} \neg \mathsf{green} \mathsf{U}^{>1} \mathsf{green}$.

For the solution it suffices to determine whether the initial state is in the satisfiability set. However, whenever you need to determine whether some state s satisfies a CTL formula then all reachable states of s have to be constructed.

Exercise 4 (10 + 10 points)

Let TS be a transition system. Let R_1, \ldots, R_n be bisimulations for TS. Prove or disprove the following statements. (i) $U = \bigcup_{1 \le i \le n} R_i$ is a bisimulation for TS.

(ii) $I = \bigcap_{1 \leq i \leq n} R_i$ is a bisimulation for *TS*.