First name:

Last name:

\qquad

Matriculation number:

- Please answer all exercises in a readable and precise way. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points
1	25	
2	25	
3	30	
4	20	
Σ	100	
Grade		

Exercise $1((2+4+6+8)+5$ points $)$

Consider the following formula φ.

- For each call touch (α) where $\alpha \in\{z, v, u, x\}$ write down the set of variables that are invalidated and the set of variables that are reseted.

$\operatorname{touch}(z):$	Valid $:=$ Valid \backslash	Reset $:=$
$\operatorname{touch}(v):$	Valid $:=$ Valid \backslash	Reset $:=$
touch $(u):$	Valid $:=$ Valid \backslash	Reset $:=$
touch $(x):$	Valid $:=$ Valid \backslash	Reset $:=$

- Determine $\llbracket \varphi \rrbracket$. Just give the result (and apply the algorithm in a lazy way)

Exercise $2(18+3+4$ points)

Consider the following NBA \mathcal{A} over $\Sigma=\{a, b\}$.

- Compute the \mathcal{A}-equivalence classes by constructing the transition profile automaton.
- Let $\mathcal{B}=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A})$. Describe \mathcal{B} in your own words.
- From the lecture we know that $\mathcal{B}=\bigcup_{(i, j) \in I} U_{i} \cdot U_{j}^{\omega}$ for some index-set I where U_{1}, \ldots, U_{n} are the $\sim_{\mathcal{A}}$ equivalence-classes that correspond to the transition profiles.
In this examples there is some j and I such that $\mathcal{B}=\bigcup_{i \in I} U_{i} \cdot U_{j}^{\omega}$. What is the transition profile that corresponds to U_{j} ?

Exercise 3 (30 points)

Consider the following timed automaton $T A$.

Formally apply the algorithm for TCTL-model checking to determine $T A \models \Phi$ where $\Phi=\mathrm{E} \neg$ green $\mathrm{U}^{>1}$ green.
For the solution it suffices to determine whether the initial state is in the satisfiability set. However, whenever you need to determine whether some state s satisfies a CTL formula then all reachable states of s have to be constructed.

Exercise $4(10+10$ points $)$

Let $T S$ be a transition system. Let R_{1}, \ldots, R_{n} be bisimulations for $T S$. Prove or disprove the following statements. (i) $U=\bigcup_{1 \leqslant i \leqslant n} R_{i}$ is a bisimulation for $T S$.
(ii) $I=\bigcap_{1 \leqslant i \leqslant n} R_{i}$ is a bisimulation for $T S$.

