First name:

Last name:

\qquad

Matriculation number:

- Please answer all exercises in a readable and precise way. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points
1	25	
2	25	
3	30	
4	20	
Σ	100	
Grade		

Exercise $1((2+4+6+8)+5$ points $)$

Consider the following formula φ.

- For each call touch (α) where $\alpha \in\{z, v, u, x\}$ write down the set of variables that are invalidated and the set of variables that are reseted.

$$
\begin{array}{lll}
\operatorname{touch}(z): & \text { Valid }:=\text { Valid } \backslash \varnothing & \text { Reset }:=\varnothing \\
\operatorname{touch}(v): & \text { Valid }:=\text { Valid } \backslash\{w\} & \text { Reset }:=\varnothing \\
\operatorname{touch}(u): & \text { Valid }:=\text { Valid } \backslash\{s\} & \text { Reset }:=\{s\} \\
\operatorname{touch}(x): & \text { Valid }:=\text { Valid } \backslash\{z, u, v, w\} & \text { Reset }:=\{v, w\}
\end{array}
$$

- Determine $\llbracket \varphi \rrbracket$. Just give the result (and apply the algorithm in a lazy way)

Since $\llbracket \mu y . y \rrbracket=\varnothing$ it follows that $\llbracket \varphi \rrbracket=\llbracket \nu x .(\mu y . y) \wedge \ldots \rrbracket=\varnothing$.

Exercise $2(18+3+4$ points)

Consider the following NBA \mathcal{A} over $\Sigma=\{a, b\}$.

- Compute the \mathcal{A}-equivalence classes by constructing the transition profile automaton.

- Let $\mathcal{B}=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A})$. Describe \mathcal{B} in your own words.
\mathcal{B} is the set of words which only contain finitely many b 's.
- From the lecture we know that $\mathcal{B}=\bigcup_{(i, j) \in I} U_{i} \cdot U_{j}^{\omega}$ for some index-set I where U_{1}, \ldots, U_{n} are the $\sim_{\mathcal{A}}$ equivalence-classes that correspond to the transition profiles.
In this examples there is some j and I such that $\mathcal{B}=\bigcup_{i \in I} U_{i} \cdot U_{j}^{\omega}$. What is the transition profile that corresponds to U_{j} ?
Since \mathcal{B} is the set of words which only contain finitely many a 's, obviously, U_{j} must not contain any word that contains a b. Moreover, U_{j} cannot be $\{\epsilon\}$. Hence, $U_{j}=a^{+}$and the corresponding transition profile is $1 \rightarrow 1,2 \rightarrow_{F} 1$.

Exercise 3 (30 points)

Consider the following timed automaton TA.

Formally apply the algorithm for TCTL-model checking to determine $T A \models \Phi$ where $\Phi=\mathrm{E} \neg$ green $\mathrm{U}^{>1}$ green.
For the solution it suffices to determine whether the initial state is in the satisfiability set. However, whenever you need to determine whether some state s satisfies a CTL formula then all reachable states of s have to be constructed.

To determine $T A \models E \neg$ green $U^{>1}$ green we just have to determine whether (red, $x=0$) $\in \operatorname{Sat}(\Phi)$ where (red, $x=0$) is a state of $R T S(T A, \Phi)$. To this end, one has to determine (red, $x=z=0$) $\vDash \mathrm{E} \neg$ green \vee green $\mathrm{U} z>$ $1 \wedge$ green $=: \Psi$ where (red, $x=z=0$) is a state of $R T S(T A \uplus\{z\}, \Phi)$.

Hence, we construct the reachable part of $R T S(T A \uplus\{z\}, \Phi)$ starting from (red, $x=z=0$).

Now CTL-model checking shows (red, $x=z=0) \models \Psi \equiv \mathrm{EF} z>1 \wedge$ green.
Hence, $($ red, $x=0) \in \operatorname{Sat}(\Phi)$ and thus, $T A \models \Phi$.

Exercise $4(10+10$ points $)$

Let $T S$ be a transition system. Let R_{1}, \ldots, R_{n} be bisimulations for $T S$. Prove or disprove the following statements.
(i) $U=\bigcup_{1 \leqslant i \leqslant n} R_{i}$ is a bisimulation for $T S$.

We prove that U is bisimulation for $T S$. So, assume $s U t$. Hence, there is some i such that $s R_{i} t$.

- Since R_{i} is a bisimulation for $T S$ we know that $L(s)=L(t)$.
- If $s \rightarrow s^{\prime}$ then there must be some t^{\prime} such that $t \rightarrow t^{\prime}$ and $s^{\prime} R_{i} t^{\prime}$ since R_{i} is a bisimulation. But this also shows $s^{\prime} U t^{\prime}$.
- If $t \rightarrow t^{\prime}$ then there must be some s^{\prime} such that $s \rightarrow s^{\prime}$ and $s^{\prime} R_{i} t^{\prime}$ since R_{i} is a bisimulation. But this also shows $s^{\prime} U t^{\prime}$.
(ii) $I=\bigcap_{1 \leqslant i \leqslant n} R_{i}$ is a bisimulation for $T S$.

We show that in general, I is not a bisimulation. Consider the following transition system.

Then it is easy to see that $R_{1}=\{(1,1),(2,2),(3,3)\}$ and $R_{2}=\{(1,1),(2,3),(3,2)\}$ are bisimulations, but $I=R_{1} \cap R_{2}=\{(1,1)\}$ is not a bisimulation.

