Model Checking (VO)	SS 2009	LVA 703521
First name:		
Last name:		
Matriculation number	:	

- Please answer all exercises in a readable and precise way. Please cross out solution attempts which are replaced by another solution.
- Cheating is not allowed. Everyone who is caught will fail the exam.
- Please do not remove the staples of the exam.

Exercise	Maximal points	Points
1	25	
2	25	
3	30	
4	20	
Σ	100	
Grade		

Exercise 1 ((2 + 4 + 6 + 8) + 5 points)

Consider the following formula φ .

• For each call $touch(\alpha)$ where $\alpha \in \{z, v, u, x\}$ write down the set of variables that are invalidated and the set of variables that are reseted.

touch(z) :	$Valid:=Valid\setminus \varnothing$	$Reset := \varnothing$
touch(v) :	$Valid := Valid \setminus \{w\}$	$Reset := \varnothing$
touch(u) :	$Valid := Valid \setminus \{s\}$	$Reset := \{s\}$
touch(x) :	$Valid := Valid \setminus \{z, u, v, w\}$	$Reset := \{v, w\}$

• Determine $\llbracket \varphi \rrbracket$. Just give the result (and apply the algorithm in a lazy way) Since $\llbracket \mu y.y \rrbracket = \emptyset$ it follows that $\llbracket \varphi \rrbracket = \llbracket \nu x.(\mu y.y) \land \dots \rrbracket = \emptyset$.

Exercise 2 (18 + 3 + 4 points)

Consider the following NBA \mathcal{A} over $\Sigma = \{a, b\}$.

• Compute the \mathcal{A} -equivalence classes by constructing the transition profile automaton.

- Let B = Σ^ω \ L(A). Describe B in your own words.
 B is the set of words which only contain finitely many b's.
- From the lecture we know that $\mathcal{B} = \bigcup_{(i,j) \in I} U_i \cdot U_j^{\omega}$ for some index-set I where U_1, \ldots, U_n are the $\sim_{\mathcal{A}}$ equivalence-classes that correspond to the transition profiles.

In this examples there is some j and I such that $\mathcal{B} = \bigcup_{i \in I} U_i \cdot U_j^{\omega}$. What is the transition profile that corresponds to U_j ?

Since \mathcal{B} is the set of words which only contain finitely many a's, obviously, U_j must not contain any word that contains a b. Moreover, U_j cannot be $\{\epsilon\}$. Hence, $U_j = a^+$ and the corresponding transition profile is $1 \twoheadrightarrow 1, 2 \twoheadrightarrow_F 1$.

Exercise 3 (30 points)

Consider the following timed automaton TA.

Formally apply the algorithm for TCTL-model checking to determine $TA \models \Phi$ where $\Phi = \mathsf{E} \neg \mathsf{green} \mathsf{U}^{>1} \mathsf{green}$.

For the solution it suffices to determine whether the initial state is in the satisfiability set. However, whenever you need to determine whether some state s satisfies a CTL formula then all reachable states of s have to be constructed.

To determine $TA \models \mathsf{E} \neg \mathsf{green} \mathsf{U}^{>1} \mathsf{green}$ we just have to determine whether $(\mathsf{red}, x = 0) \in Sat(\Phi)$ where $(\mathsf{red}, x = 0)$ is a state of $RTS(TA, \Phi)$. To this end, one has to determine $(\mathsf{red}, x = z = 0) \models \mathsf{E} \neg \mathsf{green} \lor \mathsf{green} \mathsf{U} z > 1 \land \mathsf{green} =: \Psi$ where $(\mathsf{red}, x = z = 0)$ is a state of $RTS(TA \uplus \{z\}, \Phi)$.

Hence, we construct the reachable part of $RTS(TA \uplus \{z\}, \Phi)$ starting from (red, x = z = 0).

-

Now CTL-model checking shows $(\operatorname{red}, x = z = 0) \models \Psi \equiv \mathsf{E} \mathsf{F} z > 1 \land \mathsf{green}$. Hence, $(\operatorname{red}, x = 0) \in \operatorname{Sat}(\Phi)$ and thus, $TA \models \Phi$.

Exercise 4 (10 + 10 points)

Let TS be a transition system. Let R_1, \ldots, R_n be bisimulations for TS. Prove or disprove the following statements.

(i) $U = \bigcup_{1 \leq i \leq n} R_i$ is a bisimulation for *TS*.

We prove that U is bisimulation for TS. So, assume sUt. Hence, there is some i such that sR_it .

- Since R_i is a bisimulation for TS we know that L(s) = L(t).
- If $s \to s'$ then there must be some t' such that $t \to t'$ and $s'R_it'$ since R_i is a bisimulation. But this also shows s'Ut'.
- If $t \to t'$ then there must be some s' such that $s \to s'$ and $s'R_it'$ since R_i is a bisimulation. But this also shows s'Ut'.
- (ii) $I = \bigcap_{1 \le i \le n} R_i$ is a bisimulation for TS.

We show that in general, I is not a bisimulation. Consider the following transition system.

Then it is easy to see that $R_1 = \{(1,1), (2,2), (3,3)\}$ and $R_2 = \{(1,1), (2,3), (3,2)\}$ are bisimulations, but $I = R_1 \cap R_2 = \{(1,1)\}$ is not a bisimulation.