11) Lösung. Bei Numerierung der Ecken nach dem Alphabet läuft Floyd wie folgt:

$$\begin{pmatrix}
\boxed{0} & 1 & 4 & \infty \\
2 & 0 & \infty & \infty \\
\infty & 2 & 0 & \infty \\
1 & \infty & 4 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & 1 & 4 & \infty \\
2 & \boxed{0} & 6 & \infty \\
\infty & 2 & 0 & \infty \\
1 & 2 & 4 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & 1 & 4 & \infty \\
2 & 0 & 6 & \infty \\
4 & 2 & \boxed{0} & \infty \\
1 & 2 & 4 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & 1 & 4 & \infty \\
4 & 2 & \boxed{0} & \infty \\
1 & 2 & 4 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & 1 & 4 & \infty \\
2 & 0 & 6 & \infty \\
4 & 2 & 0 & \infty \\
4 & 2 & 0 & \infty \\
1 & 2 & 4 & \boxed{0}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & 1 & 4 & \infty \\
2 & 0 & 6 & \infty \\
4 & 2 & 0 & \infty \\
1 & 2 & 4 & \boxed{0}
\end{pmatrix}$$

12) Lösung. Kruskal liefert:

k_i	$b(k_i)$	P
		$\{\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{g\},\{h\}\}$
$\{a,e\}$	1	$\{\{a,e\},\{b\},\{c\},\{d\},\{f\},\{g\},\{h\}\}$
$\{c,d\}$	2	$\{\{a,e\},\{b\},\{c,d\},\{f\},\{g\},\{h\}\}$
$\{c,e\}$	3	$\{\{a,c,d,e\},\{b\},\{f\},\{g\},\{h\}\}$
$\{a,d\}$	4	
$\{a,c\}$	5	
$\{f,g\}$	6	$\{\{a,c,d,e\},\{b\},\{f,g\},\{h\}\}$
$\{b,g\}$	7	$\{\{a,c,d,e\},\{b,f,g\},\{h\}\}$
$\{b, f\}$	8	
$\{g,h\}$	9	$\{\{a,c,d,e\},\{b,f,g,h\}\}$

13) Lösung. Der erweiterte euklidische Algorithmus mit a = 234 und b = 144 liefert:

A, B	q
(234, 1, 0)	
(144, 0, 1)	1
(90, 1, -1)	1
(54, -1, 2)	1
(36, 2, -3)	1
(18, -3, 5)	

Somit sind d = 18, u = -3 und v = 5. Das kleinste gemeinsame Vielfache von a und b ist

$$a \cdot \frac{b}{d} = 234 \cdot \frac{144}{18} = 234 \cdot 8 = 1872$$
.

14) Lösung. Zunächst entfernen wir die unerreichbaren Zustände 7, 8, 9 und 10. Dann wenden wir den Markierungsalgorithmus an, um die folgende Tabelle zu erhalten:

1					
√	2				
	√	3			
√	√	√	4		
\checkmark	√	√	√	5	
\checkmark	√	√	√	√	6

Aus dieser Tabelle kann der folgende minimale Automat generiert werden.

	a	b
\rightarrow $\{5\}*$	$\{1, 3\}$	{6}
$\{6\}*$	$\{6\}$	$\{6\}$
$\{1, 3\}$	$\{1, 3\}$	{2}
{2}	$\{4\}$	{2}
$\{4\}$	$\{6\}$	$\{2\}$

15) Lösung. Zunächst benennen wir die Zustände um: $z_0 \to 1$ und $z_1 \to 2$. Nen wenden wir die Rekursionsgleichung an und erhalten:

$$\begin{split} R_{12}^2 &= R_{12}^1 + R_{12}^1 (R_{22}^1)^* R_{22}^1 \\ R_{12}^1 &= R_{12}^0 + R_{11}^0 (R_{11}^0)^* R_{12}^0 \\ R_{22}^1 &= R_{22}^0 + R_{21}^0 (R_{11}^0)^* R_{12}^0 \\ R_{12}^0 &= b \\ R_{11}^0 &= \epsilon + a \\ R_{22}^0 &= \epsilon + b \\ R_{21}^0 &= a \end{split}$$

Der zusammengesetzte Ausdruck hat also die Form:

$$b + (\epsilon + a)(\epsilon + a)^*b + (b + (\epsilon + a)(\epsilon + a)^*b)(\epsilon + b + a(\epsilon + a)^*b)^*(\epsilon + b + a(\epsilon + a)^*b).$$

16) Lösung. Sei n beliebig und wähle das Wort $w=\mathsf{a}^n\mathsf{c}\mathsf{a}^n\in L$ mit $\ell(w)\geqslant n$. Nun seien $x,\,y,\,z$ Teilwörter von w, sodass w=xyz und $\ell(xy)\leqslant n$ und $y\neq\epsilon$. Somit kann (bei allen möglichen Formen von $x,\,y$ und z) nur gelten, dass $x=\mathsf{a}^l,\,y=\mathsf{a}^m$ und $z=\mathsf{a}^{n-m-l}\mathsf{c}\mathsf{a}^n$, wobei $1\leqslant m$ und $m+l\leqslant n$. Schließlich wählen wir k=0 und betrachten das Wort $w'=\mathsf{a}^l\mathsf{a}^{n-m-l}\mathsf{c}\mathsf{a}^n$. Wie leicht zu sehen ist gilt $w\not\in L$. (Beachten Sie dass $m\neq 0$.)

Somit haben wir alle Voraussetzungen der Kontraposition des Pumpinglemmas gezeigt und schließen, dass L nicht regulär ist.