

Diskrete Mathematik

Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl

Fakultät für Mathematik, Informatik und Physik @ UIBK Sommersemester 2011

Diskrete Mathematil

127/157 GM (MIP)

Diskrete Mathematik

usammenfassung der letzten LV

Turingmaschinen

Definition

eine einbändige, deterministische Turingmaschine (DTM) M ist ein 9-Tupel $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$

sodass

- 1 Q eine endliche Menge von Zuständen,
- 2 Σ eine endliche Menge von Eingabesymbolen,
- \blacksquare reine endliche Menge von Bandsymbolen, sodass $\Sigma \subset \Gamma$,
- **5** \sqcup ∈ $\Gamma \setminus \Sigma$, das Blanksymbol,
- 6 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ die Übergangsfunktion,
- **7** $s \in Q$, der Startzustand,
- **8** $t \in Q$, der akzeptierende Zustand und
- \mathbf{g} $r \in Q$, der verwerfende Zustand mit $t \neq r$.

Zusammenfassung der letzten LV

Definition

als Halteproblem bezeichnen wir das Problem, ob ein beliebiges Programm auf seiner Eingabe hält

Definition

Postsches Korrespondenzproblem: Gegeben zwei Listen von Strings der gleichen Länge w_1, w_2, \ldots, w_n und x_1, x_2, \ldots, x_n . Gesucht sind Indizes i_1, i_2, \ldots, i_m , sodass

$$W_{i_1}W_{i_2}\ldots W_{i_m}=X_{i_1}X_{i_2}\ldots X_{i_m}$$

Satz

die folgenden Probleme sind unentscheidbar:

- 1 das Halteproblem
- 2 das Postsche Korrespondenzproblem

Beispiel

$p \in Q$	$a \in \Gamma$	$\delta(p,a)$
S	0	(s, 0, R)
S	1	(s,1,R)
s	Ш	(p,\sqcup,L)
S	⊢	(s,\vdash,R)
p	0	(t,1,L)
p	1	(p, 0, L)
p	⊢	(t,\vdash,R)

Übersic

Übersicht

Endliche Automaten

Automaten, reguläre Sprachen und Grammatiken, (nicht)-deterministische endliche Automaten, Teilmengenkonstruktion, ϵ -NEAs, Umwandlung endlicher Automaten in reguläre Ausdrücke, Pumpinglemma, Minimierung

Berechenbarkeitstheorie

Einführung in die Berechenbarkeitstheorie, Turingmaschinen, Entscheidungsprobleme, Universelle Maschinen und Diagonalisierung

Komplexitätstheorie

Einführung in die Komplexitätstheorie, die Klassen P und NP, logarithmisch platzbeschränkte Reduktionen, Speicherplatzkomplexität

Konfiguration einer TM

Definition

eine Konfiguration einer TM M ist ein Tripel (p, x, n), sodass

- 1 $p \in Q$ Zustand,
- $\mathbf{z} = \mathbf{y} \sqcup^{\infty} \mathsf{Bandinhalt}$

 $y \in \Gamma^*$

3 $n \in \mathbb{N}$ Position des Lese/Schreibkopfes

Definition

Startkonfiguration bei Eingabe $x \in \Sigma^*$:

$$(s, \vdash x \sqcup^{\infty}, 0)$$

GM (MIP) Diskrete Mathematik 129/157 GM (MIP) Diskrete Mathematik 130/15

Step Function of TMs

Definition

Relation $\xrightarrow{1}_{M}$ ist wie folgt definiert:

$$(p,z,n) \xrightarrow{1} \begin{cases} (q,z',n-1) & \text{wenn } \delta(p,z_n) = (q,b,L) \\ (q,z',n+1) & \text{wenn } \delta(p,z_n) = (q,b,R) \end{cases}$$

z' ist String, den wir aus z erhalten, wenn z_n durch b ersetzt

Definition

reflexive, transitive Hülle $\frac{*}{M}$:

- 1 $\alpha \xrightarrow{*} \alpha$
- $\alpha \xrightarrow{n+1} \beta$, wenn $\alpha \xrightarrow{n} \gamma \xrightarrow{1} \beta$ für Konfiguration γ
- $\exists \alpha \xrightarrow{*} \beta, \text{ wenn } \exists n \alpha \xrightarrow{n} \beta$

Beispiel

$p \in Q$	$a \in \Gamma$	$\delta(p,a)$	
S	0	(s,0,R)	$(s,\vdash 0010\sqcup^{\infty},0) \xrightarrow{*}$
S	1	(s,1,R)	<i>IVI</i>
S		(p,\sqcup,L)	$(s,\vdash 0010\sqcup^{\infty},5) \xrightarrow{1}_{M}$
S	-	(s,\vdash,R)	$(\rho,\vdash 0010\sqcup^{\infty},4) \xrightarrow{1}$
p	0	(t,1,L)	IVI
p	1	(p,0,L)	$(t,\vdash 0011\sqcup^{\infty},3)$
p	-	(t,\vdash,R)	

Definition

eine TM M

• akzeptiert $x \in \Sigma^*$, wenn $\exists y, n$:

$$(s, \vdash \mathbf{x} \sqcup^{\infty}, 0) \xrightarrow{*} (\mathbf{t}, y, n)$$

• verwirft $x \in \Sigma^*$, wenn $\exists y$, n:

$$(s, \vdash \mathbf{x} \sqcup^{\infty}, 0) \xrightarrow{*} (\mathbf{r}, y, n)$$

- hält bei Eingabe x, wenn x akzeptiert oder verworfen
- hält nicht bei Eingabe x, wenn x weder akzeptiert, noch verworfen
- ist total, wenn M auf allen Eingaben hält

Definition

die Sprache einer TM *M* is wie folgt definiert:

$$L(M) := \{x \in \Sigma^* \mid M \text{ akzeptiert } x\}$$

Beispiel

betrachte $M = (\{s, t, r, q_0, q_1, q'_0, q'_1\}, \{0, 1\}, \{\vdash, \sqcup, 0, 1\}, \delta, s, t, r)$ mit δ :

$p \in Q$	$a \in \Gamma$	$\delta(p,a)$	$p \in Q$	$a \in \Gamma$	$\delta(p,a)$
S	0	(q_0,\vdash,R)	q_0'	0	(q,\sqcup,L)
S	1	(q_1,\vdash,R)	q_0'	1	(r,1,L)
s	-	(s,\vdash,R)	q_0'	\vdash	(r,\vdash,R)
S	Ш	(t,\sqcup,L)	q_1'	0	(r, 1, L)
q_0	0	$(q_0, 0, R)$	q_1'	1	(q,\sqcup,L)
q_0	1	$(q_0,1,R)$	q_1'	\vdash	(r,\vdash,R)
q_0	Ш	(q'_0,\sqcup,L)	q	0	(q,0,L)
q_1	0	$(q_1,0,R)$	q	1	(q, 1, L)
q_1	1	$(q_1,1,R)$	q	⊢	(s,\vdash,R)
q_1		(q_1',\sqcup,L)			

es gilt; $L(M) = \{ww^R \mid w \in \{0, 1\}^*\}$

Entscheidbarkeit, Aufzählbarkeit, Berechenbarkeit

GM (MIP

Diskrete Mathematik

133/157

Dickroto Ma

134/15

Entscheidbarkeit, Aufzählbarkeit, Berechenbarkeit

Definition

eine Sprache L (oder allgemeine eine Menge) heißt

- rekursiv aufzählbar (r.e.), wenn \exists Turingmaschine M mit L = L(M)
- co-r.e. wenn L das Komplement einer r.e. Sprache
- rekursiv, wenn L = L(M) und M totale TM

Satz

rekursive Mengen sind unter Komplementbildung abgeschlossen

Beweis.

- 1 angenommen L = L(M), wobei die TM M total
- 2 definiere M' indem der akzeptierende und der verwerfende Zustand von M vertauscht wird
- **3** offensichtlich $\sim L = L(M')$ und M' total

Satz

jede rekursive Menge ist rekursiv aufzählbar, aber nicht jede rekursiv aufzählbare Menge ist rekursiv

Satz

wenn L und ∼L rekursiv aufzählbar sind, dann ist L rekursiv

Beweis.

- **1** ∃ TM M_1 , M_2 mit $A = L(M_1)$ und $\sim (A) = L(M_2)$
- $\mathbf{2}$ definiere TM \mathbf{M}' , sodass das Band zwei Hälften hat

b	ĥ	а	b	a	а	а	а	b	а	а	а	Γ_{ℓ}	\rangle	
С	С	С	d	d	d	С	ĉ	d	С	d	С)	

- 3 M_1 wird auf der oberen und M_2 auf der unteren Hälfte simuliert
- 4 wenn $M_1 \times$ akzeptiert, M' akzeptiert \times
- **5** wenn M_2 x akzeptiert, M' verwirft x

Erinnerung

eine Sprache L (oder allgemeine eine Menge) heißt

- rekursiv, wenn L = L(M) und M totale TM
- rekursiv aufzählbar (r.e.), wenn \exists Turingmaschine M mit L = L(M)

Definition

Eigenschaft P heißt

- entscheidbar, wenn $\{x \mid P(x)\}$ rekursiv
- semi-entscheidbar, wenn $\{x \mid P(x)\}$ rekursiv aufzählbar

Beispiele

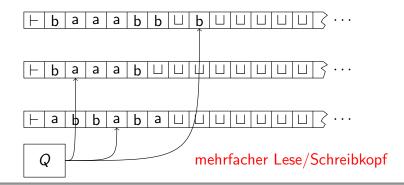
- $\{ww^R \mid w \in \{0,1\}^*\}$ ist rekursiv, also ist Wortumkehr entscheidbar
- das Postsche Korrespondenzproblem (PCP) ist unentscheidbar, also ist die folgende Sprache nicht rekursiv:

$$\{(w_1, x_1) \cdots (w_n, x_n) \mid \exists i_1 \cdots i_m \ w_{i_1} w_{i_2} \dots w_{i_m} = x_{i_1} x_{i_2} \dots x_{i_m} \}$$

Äquivalente Formulierungen

Definition (informell)

Erweiterung um mehrere Bänder und Lese/Schreibköpfe:



Erweiterung der Definition

$$\delta \colon Q \times \Gamma^3 \to Q \times \Gamma^3 \times \{\mathsf{L},\mathsf{R}\}^3$$

Beispiel

. Aquivalente Formulierungen

betrachte die Sprache

$$L = \{a^i b^j c^k \mid i \times j = k \text{ und } i, j, k \geqslant 1\}$$

Lösung (informell)

bei Eingabe w

- 1 lies die Eingabe und stelle fest, ob $w \in L(a^*b^*c^*)$ wenn nicht: verwerfe
- 2 setze den Lesekopf des ersten Bandes auf den Bandanfang
- markiere das erste unmarkierte a markiere gleich viel b's wie c's
- 4 lösche die Markierung der b's wiederhole 3 solange wie möglich
- 5 wenn alle c markiert sind, dann akzeptiere, sonst verwerfe

Satz

 \forall DTM mit k Bändern \exists einbändige DTM M', sodass L(M) = L(M')

Beweis.

Äquivalente Formulierungen

- 1 Bänder können nebeneinander oder übereinander simulieren
- 2 wir simulieren die Bänder übereinander, oBdA sei k=2
- \blacksquare wir erweitern das Alphabet von M'

ĉ

4 Band von M' kann folgende Gestalt haben:

b	ĥ	a	b	a	a	а	а	b	a	а	a		〉
С	С	С	d	d	d	С	ĉ	d	С	d	С	()

5 alle Bänder von *M* sind nun repräsentiert und die Leseköpfe werden durch die Zusatzmarkierung ^ ausgedrückt

Nichtdeterministische Turingmaschine

Definition

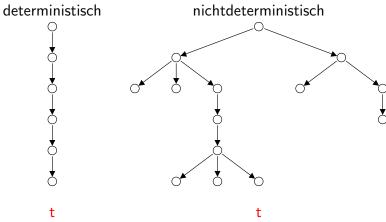
eine k-bändige, nichtdeterministische TM (NTM) N ist ein 9-Tupel

$$N = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$$

sodass

- 1 Q eine endliche Menge von Zuständen,
- 2 Σ eine endliche Menge von Eingabesymbolen,
- Γ eine endliche Menge von Bandsymbolen, sodass $\Sigma \subseteq \Gamma$,
- \vdash ∈ Γ \ Σ, der linke Endmarker,
- □ □ Ε Γ ∇, das Blanksymbol,
- **δ**: $Q \times \Gamma^k \to \mathcal{P}(Q \times \Gamma^k \times \{L, R\}^k)$ die Übergangsfunktion,
- **7** $s \in Q$, der Startzustand,
- 8 $t \in Q$, der akzeptierende Zustand und
- $r \in Q$, der verwerfende Zustand mit $t \neq r$.

Nichtdeterministischer Berechnungsbaum



Beobachtung

damit NTM N akzeptiert, genügt ein Pfad, sodass N in den akzeptierenden Zustand gelangt

Äguivalente Formulierungen

Nichtdeterminismus vs. Determinisums

Satz

- \forall N einbändige NTM, \exists dreibändige DTM M, sodass L(M) = L(N)
- jede DTM ist auch eine NTM

(MIP) Diskrete Mathematik 142/157

GM (MIP) Diskrete Mathematik 143/157