

Diskrete Mathematik

Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl

Fakultät für Mathematik, Informatik und Physik @ UIBK Sommersemester 2011

GM (MIP)

Diskrete Mathematik

1/131

'usammenfassung

Zusammenfassung der letzten LV

Definition

ein deterministischer endlicher Automat besteht aus

- 1 einer endliche Menge Q, deren Elemente Zustände heißen
- $\mathbf{2}$ einer endliche Menge $\mathbf{\Sigma}$, die Eingabealphabet heißt und deren Elemente Eingabezeichen genannt werden
- einer Abbildung

$$\delta: Q \times \Sigma \to Q$$

die Übergangsfunktion

- 4 einem ausgezeichneten Zustand q_0 ; der Startzustand
- **5** einer Teilmenge $F \subseteq Q$; die akzeptierenden Zustände die kompakteste Repräsentation eines DEA ist das Quintupel:

$$A = (Q, \Sigma, \delta, q_0, F)$$

GM (MIP) Diskrete Mathematik 24/131

Definition

sei $A = (Q, \Sigma, \delta, q_0, F)$ ein DEA; die Sprache L(A) von A:

$$\mathsf{L}(A) := \{ x \mid \widehat{\delta}(q_0, x) \in F \}$$

hier bezeichnet $\widehat{\delta}$ die Erweiterung von δ auf Wörter

Beispiel

definiere DEA A, der alle aus 0en und 1en bestehenden Zeichenketten akzeptiert, die die Folge 01 enthalten

 $L = \{x01y \mid x, y \text{ sind beliebige Zeichenketten aus 0en und 1en}\}$

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
* q 2	q 2	q_2

GM (MIP)

Diskrete Mathematik

25/131

Übersicht

Übersicht

Endliche Automaten

Automaten, reguläre Sprachen und Grammatiken, (nicht)-deterministische endliche Automaten, Teilmengenkonstruktion, ϵ -NEAs, Umwandlung endlicher Automaten in reguläre Ausdrücke, Pumpinglemma, Minimierung

Berechenbarkeitstheorie

Einführung in die Berechenbarkeitstheorie, Turing Maschinen, Entscheidungsprobleme, Universelle Maschinen und Diagonalisierung,

Komplexitätstheorie

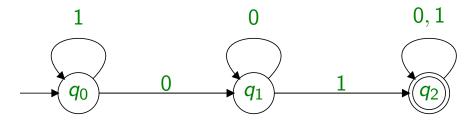
Einführung in die Komplexitätstheorie, die Klassen P und NP, logarithmisch platzbeschränkte Reduktionen, Speicherplatzkomplexität

GM (MIP) Diskrete Mathematik 26/131

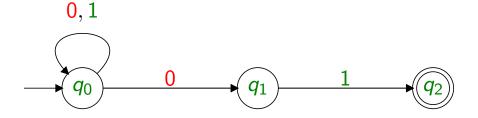
Frage

Wie definiert man einen Automaten, der alle Binärstrings akzeptiert, die in 01 enden?

Automat A



Automat B



GM (MIP)

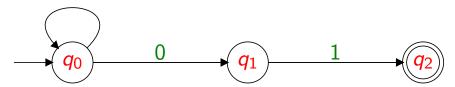
Diskrete Mathematik

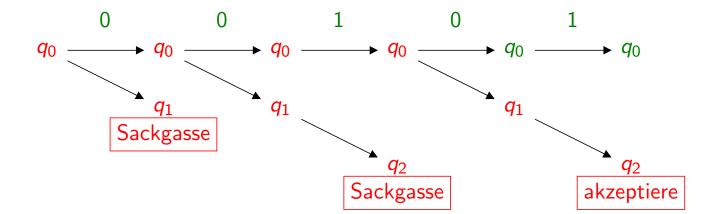
27/131

Nichtdeterministische Endliche Automaten

Nichtdeterminismus

Automat B 0,1





Nichtdeterministischer Endlicher Automat

Definition

Ein nichtdeterministischer endlicher Automat (NEA) ist gegeben durch

- 1 eine endliche Menge Q, deren Elemente Zustände heißen
- 2 eine endliche Menge Σ , die Eingabealphabet heißt und deren Elemente Eingabezeichen genannt werden,
- 3 eine Abbildung

$$\delta \colon Q \times \Sigma \to \mathcal{P}(Q)$$

die Übergangsfunktion

- 4 einen ausgezeichneten Zustand q_0 ; den Startzustand
- **5** eine Teilmenge $F \subseteq Q$; die akzeptierenden Zustände kompakteste Repräsentation eines NEA ist das Quintupel:

$$A = (Q, \Sigma, \delta, q_0, F)$$

GM (MIP)

Diskrete Mathematik

29/131

lichtdeterministische Endliche Automater

Alternative Repräsentationen

Beispiel

der NEA

$$\mathbf{B} = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

kann auch wie folgt definiert werden:

 δ definiert durch folgende Zustandstafel:

	0	1
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	$\{q_2\}$
* q 2	Ø	Ø

Beispiel

alternativ, repräsentiere NEA B mit Hilfe eines Zustandsgraphen, wie oben

GM (MIP) Diskrete Mathematik 30/131

Definition

 δ die Übergangsfunktion eines NEA $N = (Q, \Sigma, \delta, q_0, F)$; für N definiere die erweiterte Übergangsfunktion $\widehat{\delta} \colon Q \times \Sigma^* \to \mathcal{P}(Q)$:

1 Basis $\widehat{\delta}(p,\epsilon) := \{p\}$

2 Schritt sei x=ya; angenommen $\widehat{\delta}(p,y)=\{q_1,\ldots,q_k\}$ und

$$\bigcup_{i=1}^k \delta(q_i, \mathbf{a}) = \{r_1, \dots, r_m\}$$

setze

$$\widehat{\delta}(p, ya) = \{r_1, \dots, r_m\} = \bigcup_{q \in \widehat{\delta}(p, y)} \delta(q, a)$$

Definition

die Sprache von NEA $N = (Q, \Sigma, \delta, q_0, F)$:

$$\mathsf{L}(\mathsf{N}) := \{ x \mid \widehat{\delta}(q_0, x) \cap \mathsf{F} \neq \varnothing \}$$

GM (MIP)

Diskrete Mathematik

31/131

lichtdeterministische Endliche Automater

Erweiterte Übergangsfunktion

0, 1

Beispiel

 q_0 q_1 q_2

- $\widehat{\delta}(q_0, \epsilon) = \{q_0\}$
- $\widehat{\delta}(q_0, 0) = \delta(q_0, 0) = \{q_0, q_1\}$
- $\widehat{\delta}(q_0, 00) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
- $\bullet \ \widehat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$
- $\widehat{\delta}(q_0, 0010) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
- $\widehat{\delta}(q_0, 00101) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$

Teilmengenkonstruktion

Definition

sei $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$, konstruiere deterministische Automaten

$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$

übrige Komponenten für *D*:

- **1** Q_D ist die Menge aller Teilmengen von Q_N
- 2 zur Berechnung von δ_D betrachten wir jede Teilmenge $S \subseteq Q_N$ und jedes $a \in \Sigma$; wir setzen:

$$\delta_{\mathcal{D}}(S,a) = \bigcup_{p \in S} \delta_{\mathcal{N}}(p,a)$$

 $\mathbf{3}$ F_D ist definiert als die Menge

$${S \subseteq Q_N \mid S \cap F_N \neq \emptyset}$$

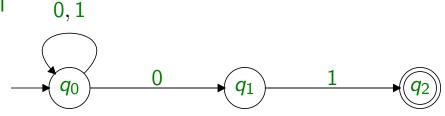
GM (MIP)

Diskrete Mathematik

33/131

Teilmengenkonstruktion

Beispiel



Teilmengenkonstruktion

	0	1
Ø	Ø	Ø
$ ightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_{2}\}$
$*\{q_2\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
$*\left\{q_0,q_2\right\}$	$\{q_0,q_1\}$	$\{q_{0}\}$
$*\left\{q_1,q_2\right\}$	Ø	$\{q_{2}\}$
$*\{q_0, q_1, q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$

GM (MIP) Diskrete Mathematik 34/131

Teilmengenkonstruktion (2)

wir benennen die Zustände im erhaltenen DEA um:

$$\varnothing$$
 A $\{q_0\}$ B $\{q_1\}$ C $\{q_2\}$ D $\{q_0,q_1\}$ E $\{q_0,q_2\}$ F $\{q_1,q_2\}$ G $\{q_0,q_1,q_2\}$ H

GM (MIP) Diskrete Mathematik 35/131

Teilmengenkonstruktion

Definition

definiere jene Teilmengen von Q_N , die erreichbar sind:

- **1** Basis: Sei q_0 der Startzustand von N; dann ist $\{q_0\}$ erreichbar
- 2 Schritt: Angenommen die Menge S ist erreichbar; dann ist für jeden Eingabebuchstaben a, die Teilmenge $\delta_D(S, a)$ erreichbar

Beispiel		0	1	erreichbar
	Ø	Ø	Ø	
	$ ightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$	\checkmark
	$\{q_1\}$	Ø	$\{q_2\}$	
	$\{q_2\}$	Ø	Ø	
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0, q_2\}$	\checkmark
	$*\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0\}$	\checkmark
	$*\{q_1,q_2\}$	Ø	$\{q_2\}$	
	$*\{q_0, q_1, q_2\}$	$\{q_0,q_1\}$	$\{q_0, q_2\}$	

GM (MIP) Diskrete Mathematik 36/131