

Diskrete Mathematik

Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl

Fakultät für Mathematik, Informatik und Physik @ UIBK Sommersemester 2011

GM (MIP)

Zusammenfassung der letzter

Diskrete Mathematik

1/104

Zusammenfassung der letzten LV

Zusammenfassung der letzten LV

Definition

ein *ϵ*-NEA ist gegeben durch

- \blacksquare eine endliche Menge Q, den Zuständen
- 2 eine endliche Menge Σ , dem Eingabealphabet
- 3 eine Abbildung

$$\delta \colon Q \times \Sigma \cup \{\epsilon\} \to \mathcal{P}(Q)$$

die Übergangsfunktion

- 4 einen ausgezeichneten Zustand, den Startzustand
- **5** eine Teilmenge $F \subseteq Q$, den akzeptierenden Zuständen

um Verwechslungen auszuschließen, fordern wir dass $\epsilon \not\in \Sigma$

GM (MIP) Diskrete Mathematik 37/104

Epsilon-Hülle

Definition

betrachte den Zustandsgraphen des Automaten, setze $S=\{q\}$

der folgende Algorithmus markiert alle Zustände in ϵ -Hülle(q):

- $\mathbf{1}$ markiere die Zustände in S
- 2 solange $S \neq \emptyset$, wiederhole:
 - wähle einen Zustand p aus S und entferne p
 - bestimme alle unmarkierten Nachfolger von p die mit einer ϵ -Kante erreichbar sind
 - markiere diese und füge sie zu S hinzu

Definition

die Sprache von ϵ -NEA $\boldsymbol{E} = (Q, \Sigma, \delta, q_0, F)$:

$$\mathsf{L}(E) := \{ x \mid \widehat{\delta}(q_0, x) \cap F \neq \emptyset \}$$

GM (MIP)

Diskrete Mathematik

38/104

Obersicht

Übersicht

Endliche Automaten

Automaten, reguläre Sprachen und Grammatiken, (nicht)-deterministische endliche Automaten, Teilmengenkonstruktion, ϵ -NEAs, Umwandlung endlicher Automaten in reguläre Ausdrücke, Pumpinglemma, Minimierung

Berechenbarkeitstheorie

Einführung in die Berechenbarkeitstheorie, Turingmaschinen, Entscheidungsprobleme, Universelle Maschinen und Diagonalisierung,

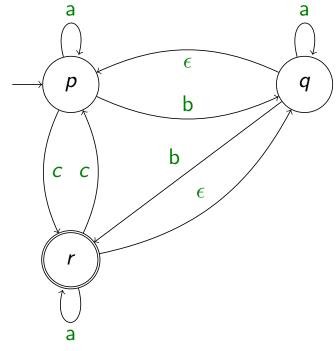
Komplexitätstheorie

Einführung in die Komplexitätstheorie, die Klassen P und NP, logarithmisch platzbeschränkte Reduktionen, Speicherplatzkomplexität

GM (MIP) Diskrete Mathematik 39/104

Beispiel (1)

Beispiel betrachte ϵ -NEA A



Frage

welche Sprache akzeptiert A?

GM (MIP)

Diskrete Mathematik

40/104

Übersicht

Beispiel (2)

	ϵ	а	b	С
$\rightarrow p$	Ø	{ <i>p</i> }	{ <i>q</i> }	{ <i>r</i> }
q	{ <i>p</i> }	{ q }	{ <i>r</i> }	Ø
* <i>r</i>	{ <i>q</i> }	{ <i>r</i> }	Ø	{ <i>p</i> }

Epsilon-Hüllen

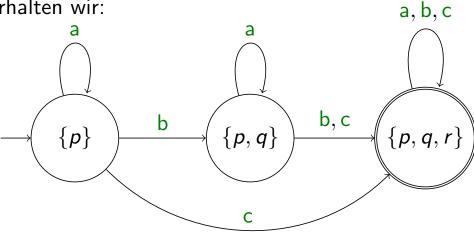
$$\epsilon$$
-Hülle $(p) = \{p\}$ ϵ -Hülle $(q) = \{q, p\}$ ϵ -Hülle $(r) = \{r, q, p\}$

Zustandstabelle

	а	b	С
$ o \{p\}$	{ <i>p</i> }	$\{p,q\}$	$\{p,q,r\}$
$\{p,q\}$	$\{p,q\}$	$\{p,q,r\}$	$\{p,q,r\}$
$*\{p,q,r\}$	$\{p,q,r\}$	$\{p,q,r\}$	$\{p,q,r\}$

Beispiel (3)

in Summe erhalten wir:



Antwort

A akzeptiert alle Wörter über $\{a, b, c\}$, sodass

- 1 entweder zwei bs oder
- 2 ein c auftreten

GM (MIP)

Diskrete Mathematik

42/104

Äquivalenz von ϵ -NEAs und DEAs

Satz

sei $D=(Q_D,\Sigma,\delta_D,\{q_0\},F_D)$ der DEA, der mit der Teilmengenkonstruktion aus ϵ -NEA $E=(Q_E,\Sigma,\delta_E,q_0,F_E)$ konstruiert ist, dann gilt L(D)=L(N)

Beweisansatz

wie für die Korrektheit der Teilmengenkonstruktion für NEAs

Satz

eine Sprache L wird genau dann von einem ϵ -NEA akzeptiert, wenn L von einem DEA akzeptiert wird.

Beweis.

der Satz folgt aus der Teilmengenkonstruktion und der einfachen Einsicht, dass jeder DEA in einen ϵ -NEA umgeschrieben werden kann

43/104

Anwendung von Endlichen Automaten

Anwendung

- Softwarebasiertes Entwickeln und Testen von Schaltkreisen
- Compilerbau: Lexikalische Analyse
- Textsuche; Pattern Matching
- Softwareverifikation von Protokollen
- Spielengine von Computerspiele

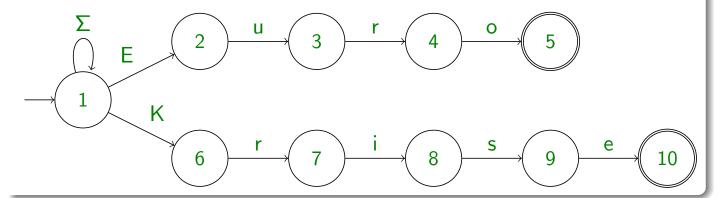
Beispiel

- gesucht sei eine Liste von Schlüsselwörter in einem Text oder HTML/XML Dokument
- Inhalt des Textes ändert sich täglich, sodass Indizierung zu teuer
- suche die Worte Euro oder Krise in einer Online-Zeitung

GM (MIP) Diskrete Mathematik 44/104

Anwendung

Beispiel



Implementierung

- wir können N direkt simulieren, indem wir alle Möglichkeiten aufzählen
- oder wir wanden N in einen DEA D um und implementieren D

Lemma

der so erhaltene DEA hat maximal soviele Zustände wie der NEA

Beweis.

Analyse der Teilmengenkonstruktion ergibt:

- 11 sei p ein Zustand in N, erreichbar beim Lesen von $a_1 \dots a_m$ korrespondierende Zustand in D besteht aus 1 und p, sowie jedem Zustand aus N der durch einen Suffix von $a_1 \dots a_m$ erreichbar
- **2** Kanten in D von $\{1, p_1, \ldots, p_n\}$ nach $\{1, q_1, \ldots, q_m\}$, wenn
 - entweder in N mit a markierte Kante von p_i nach q_i , oder
 - in N mit a markierte Kante von 1 nach q_j , wenn keine Kante von p_i nach q_i mit a markiert

Beispiel

- D enthält zB die Zustände: {1}, {1,2}, {1,3}, {1,4}, {1,5}
- Kante von $\{1\}$ nach $\{1,2\}$ mit E markiert; Kante von $\{1,2\}$ nach $\{1\}$ mit $\Sigma \setminus \{E,K,u\}$ markiert

Anwendung

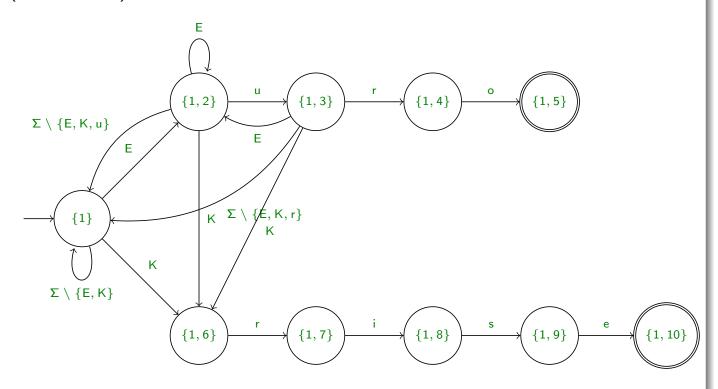
GM (MIP)

Diskrete Mathematik

46/104

Beispiel

durch die Teilmengenkonstruktion erhalten wir den folgenden DEA D (vereinfacht)



seien L, M formale Sprachen

Definition

die Vereinigung $L \cup M$ von L und M, ist die Menge der Wörter, die entweder in L oder in M liegen

Definition

die Konkatenation $L \cdot M$ von L und M, ist die Menge der Wörter, die gebildet werden können, indem wir ein Wort aus L mit einem Wort aus M verketten

Definition

der Abschluss L^* von L ist die Menge der Wörter, die gebildet werden können durch die Verkettung von beliebig vielen Elementen aus L

Beispiel

Algebra $(\Sigma^*, \cdot, \epsilon)$, sodass Σ^* die Menge aller Wörter über Σ , \cdot die Verkettung und ϵ das neutrale Element, heißt Wortmonoid

GM (MIP)

Diskrete Mathematik

48/104

Reguläre Ausdrücke

Reguläre Ausdrücke

Erinnerung

sei Σ ein endliches Alphabet; wir definieren reguläre Ausdrücke induktiv

Basis

■ ist ein regulärer Ausdruck (kurz: RA)

2 € ist ein RA

3 für jedes Symbol a ist a ein RA

Sprache von ∅

$$\widehat{\mathsf{L}(\varnothing)} := \varnothing$$

$$L(\epsilon) := \{\epsilon\}$$

$$L(a) := \{a\}$$

Schritt

1 für jeden RA E ist E* ein RA

2 für RAs E und F ist EF ein RA

3 für RAs E und F ist E + F ein RA

wenn E ein RA ist, dann ist (E) ein RA

$$L(E^*) := L(E)^*$$

$$L(EF) := L(E) \cdot L(F)$$

$$L(E + F) := L(E) \cup L(F)$$

$$L((E)) := L(E)$$

Aufgabe

wir wollen einen regulären Ausdruck formulieren, dessen Sprache L alle Strings mit abwechselnden 0en und 1en enthält

Lösung

- regulärer Ausdruck 10 beschreibt den String 10
- ullet also beschreibt $(oldsymbol{01})^*$ alle Strings der Form

0101010101...

• und (10)* beschreibt

1010101010...

$$L = (01)^* + (10)^* + 0(10)^* + 1(01)^*$$
$$= (\epsilon + 1)(01)^*(\epsilon + 0)$$

GM (MIP)

Diskrete Mathematik

50/104

Algebraische Gesetze für reguläre Ausdrücke

Algebraische Gesetze für reguläre Ausdrücke

Beispiel

$$\mathbf{0}^*\mathbf{1} + (\mathbf{0}^*\mathbf{1})(\mathbf{0}^*\mathbf{1} + \epsilon)^*(\mathbf{0}^*\mathbf{1}) \equiv (\mathbf{0}^*\mathbf{1})^+$$

seien *L*, *M*, *N* beliebige reguläre Ausdrücke Assoziativität und Kommutativität

Kommutativität von +

$$2 L((L+M)+N) = L(L+(M+N))$$

Assoziativität von +

$$L((LM)N) = L(L(MN))$$

Assoziativität der Verkettung

Erinnerung

Kommutativität der Verkettung gilt nicht

GM (MIP) Diskrete Mathematik 51/104

Neutrales Element und Löscher

Erinnerung

ein neutrales Element für einen Operator ist ein Element das die Operation nicht beeinflusst

Lemma

🛮 🗸 ist das neutrale Element für +

$$L(\epsilon L) = L(L\epsilon) = L(L)$$

€ is das neutrale Element von

Definition

ein Löscher (Annihilator) für einen Operator ist ein Element das die Operation zunichte macht

Lemma

Ø ist ein Löscher der Verkettung

GM (MIP)

Diskrete Mathematik

52/104

Algebraische Gesetze für reguläre Ausdrücke

Distributivgesetze und Idempotenzgesetz

Lemma

$$1 L(L(M+N)) = L(LM+LN)$$

Linksdistributivität

$$2 L((M+N)L) = L(ML+NL)$$

Rechtsdistributivität

$$\mathbf{0} + \mathbf{01}^* \equiv \mathbf{0}\epsilon + \mathbf{01}^* \equiv \mathbf{0}(\epsilon + \mathbf{1}^*) \equiv \mathbf{01}^*$$

Lemma

Idempotenzgesetz von +

$$\mathbf{0}^* + \mathbf{0}^* \equiv \mathbf{0}^*$$

GM (MIP) Diskrete Mathematik 53/104

Gesetze für den Kleene-Stern

Lemma

$$L(L^*) = L(L^*L^*) = L((L^*)^*)$$

$$2 \mathsf{L}(\varnothing^*) = \mathsf{L}(\epsilon)$$

$$L(L^+) = L(LL^*) = L(L^*L)$$

Definition

$$L(L^*) = L(L^+ + \epsilon)$$

$$\mathsf{L}(\underline{L?}) = \mathsf{L}(\epsilon + \underline{L})$$

Definition

6
$$L((E+F)^*) = L((E^*+F^*)^*) =$$

= $L((E^*F^*)^*) = L((E^*F)^*E^*) = L(E^*(FE^*)^*)$

$$(\mathbf{0}^* + \mathbf{1}?)^* \equiv ((\mathbf{0}^*)^*(\mathbf{1}?)^*)^* \equiv (\mathbf{0}^*(\epsilon + \mathbf{1})^*)^* \equiv (\mathbf{0}^*\mathbf{1}^*)^*$$

GM (MIP)

Diskrete Mathematik

54/104

Algebraische Gesetze für reguläre Ausdrücke

Gesetze für den Kleene-Stern (2)

Lemma

$$L(L^*) = L(L^*L^*) \quad (= L(L^*) L(L^*) = L(L)^* L(L)^*)$$

Beweis.

zunächst $L(L)^* \subseteq L(L)^* L(L)^*$:

- sei $x \in L(L)^*$, dann $x = x\epsilon \in L(L)^* L(L)^*$
- also folgt die Behauptung

zunächst $L(L)^* \supseteq L(L)^* L(L)^*$:

- sei $x \in L(L)^* L(L)^*$
- $\exists y, z \text{ aus } L(\underline{L})^*, \text{ sodass } x = yz$
- $\exists k, l \text{ sodass } y \in L(L)^k, z \in L(L)^l \text{ und } x \in L(L)^{k+l}$
- somit $x \in L(L)^*$ und die Behauptung folgt

GM (MIP) Diskrete Mathematik 55/