

Automatic Deduction

SS 2010

EXAM 1

September 27, 2010

		This exam consists of six exercises of which you have to select exactly four . Every exercise is worth 25 points. The available points for each item are written in the margin. You need at least 50 points to pass. Explain your answers!
	1	Consider the following CNF:
		$\phi = (\neg 1 \lor 5) \land (\neg 2 \lor 4) \land (\neg 3 \lor \neg 6) \land (\neg 3 \lor \neg 5 \lor 7) \land (6 \lor \neg 7)$
[7]		(a) Show that the sequence of decisions 1 2 3 (with exhaustive unit propagation after each decision) leads to a conflict.
[9]		(b) Formulate the backjump rule of the abstract DPLL framework.
[9]		(c) Construct two different backjump clauses and give the corresponding results of applying the backjump rule.
	2	Consider the formula $\varphi^{\rm UF}$
		$H(F(x_1)) = G(x_1, F(x_2)) \land F(H(x_2)) \neq G(F(x_1), F(x_2)) \land G(H(x_1), x_2) = H(x_2)$
		in equality logic with uninterpreted functions.
[9] [9] [7]		 (a) Use Ackermann's reduction to transform φ^{UF} into an equivalent equality logic formula. (b) Use Bryant's reduction to transform φ^{UF} into an equivalent equality logic formula. (c) Is φ^{UF} satisfiable?
	3	Consider the following equality logic formula $\varphi^{\rm E}$:
		$(a = b \lor c = d) \land (a = c \lor e = f \lor e \neq j) \land b = d \land (c \neq d \lor g \neq h) \land g \neq i \land (h = i \lor f = j)$
[4]		(a) Compute the equality graph of $\varphi^{\rm E}$ and list its contradictory cycles.
[4]		(b) Compute the propositional skeletion of $\varphi^{\rm E}$.
[4]		(c) Compute a nonpolar chordal equality graph for $\varphi^{\rm E}$.
[4]		(d) Transform $\varphi^{\rm E}$ into an equisatisfiable propositional formula.
[9]		(e) Compute an adequate domain for $\varphi^{\rm E}$ whose state space is smaller than 10!

(e) Compute an adequate domain for $\varphi^{\rm E}$ whose state space is smaller than 10!

Turn Over

Turn Over

Turn Over

- (a) Determine the satisfiability of the following formulas over the integers by applying Cooper's method:
- [10] i. $\exists x. \ 3x < y$
- [10] ii. $\forall x. \ 3 < 2x + y \lor x + 2y < 3$
 - (b) What is the purpose of divisibility predicates in the theory of augmented linear integer arithmetic?
 - 5 Determine the satisfiability of the following formulas over the reals (or rationals) by applying Ferrante and Rackoff's method:
- [10] (a) $\exists x. \ 2x = 3y$

[5]

- [15] (b) $\exists x. \ 3x + 1 < 10 \land 7x 6 > 8$
 - 6 (a) Determine the satisfiability of the following formulas in the combination of linear arithmetic over the integers and equality logic with uninterpreted functions, using Nelson and Oppen's method:
- [10] i. $1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$

[10]
ii.
$$f(x) = x + y \land x \leqslant y + z \land x + z \leqslant y \land y = 1 \land f(x) \neq f(2)$$

[5] (b) What is a stably infinite theory?