This exam consists of six exercises of which you have to select exactly four. Every exercise is worth 25 points. The available points for each item are written in the margin. You need at least 50 points to pass. Explain your answers!

1 Consider the following CNF:

$$
\phi=(\neg 1 \vee 5) \wedge(\neg 2 \vee 4) \wedge(\neg 3 \vee \neg 6) \wedge(\neg 3 \vee \neg 5 \vee 7) \wedge(6 \vee \neg 7)
$$

(a) Show that the sequence of decisions 123 (with exhaustive unit propagation after each decision) leads to a conflict.
(b) Formulate the backjump rule of the abstract DPLL framework.
(c) Construct two different backjump clauses and give the corresponding results of applying the backjump rule.

2 Consider the formula φ^{UF}

$$
H\left(F\left(x_{1}\right)\right)=G\left(x_{1}, F\left(x_{2}\right)\right) \wedge F\left(H\left(x_{2}\right)\right) \neq G\left(F\left(x_{1}\right), F\left(x_{2}\right)\right) \wedge G\left(H\left(x_{1}\right), x_{2}\right)=H\left(x_{2}\right)
$$

in equality logic with uninterpreted functions.
(a) Use Ackermann's reduction to transform φ^{UF} into an equivalent equality logic formula.
(b) Use Bryant's reduction to transform φ^{UF} into an equivalent equality logic formula.
(c) Is φ^{UF} satisfiable?

3 Consider the following equality logic formula φ^{E} :
$(a=b \vee c=d) \wedge(a=c \vee e=f \vee e \neq j) \wedge b=d \wedge(c \neq d \vee g \neq h) \wedge g \neq i \wedge(h=i \vee f=j)$
(a) Compute the equality graph of φ^{E} and list its contradictory cycles.
(b) Compute the propositional skeletion of φ^{E}.
(c) Compute a nonpolar chordal equality graph for φ^{E}.
(d) Transform φ^{E} into an equisatisfiable propositional formula.
(e) Compute an adequate domain for φ^{E} whose state space is smaller than 10 !

4 (a) Determine the satisfiability of the following formulas over the integers by applying Cooper's method:

5 Determine the satisfiability of the following formulas over the reals (or rationals) by applying Ferrante and Rackoff's method:

6 (a) Determine the satisfiability of the following formulas in the combination of linear arithmetic over the integers and equality logic with uninterpreted functions, using Nelson and Oppen's method:
i. $\exists x .3 x<y$
ii. $\forall x .3<2 x+y \vee x+2 y<3$
(b) What is the purpose of divisibility predicates in the theory of augmented linear integer arithmetic?
(a) $\exists x \cdot 2 x=3 y$
(b) $\exists x .3 x+1<10 \wedge 7 x-6>8$
i. $1 \leqslant x \wedge x \leqslant 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$
ii. $f(x)=x+y \wedge x \leqslant y+z \wedge x+z \leqslant y \wedge y=1 \wedge f(x) \neq f(2)$
(b) What is a stably infinite theory?

