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Abstract

We present three methods which prove confluence of term rewriting systems.
In contrast to the famous Newman’s Lemma, these methods work also with
non-terminating aspects like commutative and associative rewrite rules. The
methods split the term rewriting system into a terminating and a potentially
non-terminating part. The proofs themselves are mainly based on the well–
known critical pairs calculation. One method also includes the calculation of
parallel critical pairs. For every method we present a step-by-step procedure
which deterministically gives an answer about the confluence of a given term
rewriting system. Additionally we present the relationship between and the
limitations of the methods.
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1 Introduction

Term rewriting systems (abbreviated TRSs) are an important formalism in
logic, computer science and also in mathematics. By using TRSs one can model
a system or a program algebraically and check its correctness. One of the most
important properties of TRSs is confluence. Therefore, much effort is spent
on developing new techniques which show confluence. The most common tech-
nique to show this property is Newman’s Lemma [4, Theorem 3]. This lemma is
based on termination, which is also a very important property of TRSs. As not
every confluent TRS is terminating, Newman’s Lemma is not always helpful.
For example the following TRS R is not terminating:

R =


1 : f(g(x), y)→ g(f(x, y)) 2 : g(x)→ g(g(x))

3 : f(x, g(y))→ g(f(x, y)) 4 : g(g(x))→ g(x)

5 : f(x, y)→ f(y, x)

A TRS is non-termination if it contains associativity and commutativity rules
(AC-rules). The TRS R is not terminating because of the commutativity rule
5.
In this report we present three methods which show confluence of TRSs contain-
ing non-terminating parts like AC-rules. The first method presented in Section
3 is the simplest method and is also a special case of the second method. The
second method, which is presented in Section 4, uses parallel critical pairs. The
last but not least method deals with linear TRSs instead of left-linear TRSs
and is presented in Section 5. The full relation between the three methods is
shown in Figure 1. If one method shows confluence, the TRS is confluent. In
this report also the confluence of the TRS R shown above will be proved. This
report is based mainly on [1] and [2]. For the definition of parallel critical pairs
we also looked at [3].

Theorem 3.2

Theorem 4.6

Theorem 5.2

Figure 1: Relation between the three methods
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2 Preliminaries

2 Preliminaries

In this section we give some basic definitions, which we need for the following
sections.

Definition 2.1. Let p be a position and t be a term. Then t(p) denotes the
symbol of term t at position p and t|p abbreviates the subterm of t at position
p. The replacement of a subterm t|p by another term s is abbreviated by t[s]p.

Definition 2.2. A term t of a TRS R is called a normal form if t→R u holds
for no term u. The set of all normal terms is denoted by NF (R).

Definition 2.3. Let R be a TRS and s, t two terms of R. We use the notation

s
!→R t

if s
∗→R t and t ∈ NF (R).

Definition 2.4. Let R be a TRS, s, t two terms in R and p1, . . . , pn parallel
positions in term s. We write

s q→{p1,...,pn},R t

or simply s q→R t if there exists rewrite rules l1 → r1, . . . , ln → rn ∈ R and substi-
tutions θ1, . . . , θn such that s|pi = liθi for each i and t = s[r1θ1, . . . , rnθn]p1,...,pn .
We call s q→R t a parallel rewrite step.

Note: The parallel rewrite step includes the identity relation.

Definition 2.5. A set of n equations is written in the form:

E = {s1 ≈ t1, . . . , sn ≈ tn}

We call a set of equations E unifiable if a substition σ exists with siσ = tiσ for
all i. The substitution σ is a unifier of E .

Note: The abbreviation E−1 denotes the same set of equations, but in reversed
order: E−1 = {t1 ≈ s1, . . . , tn ≈ sn}.

Definition 2.6. Let s, t be two terms without common variables and p a non-
variable position in t. The term s overlaps on term t at position p, if the
subterm t|p unifies with s.

Definition 2.7. A critical pair is generated when there exists an overlap be-
tween the left-hand sides of two rewrite rules. Let l1 → r1 (from a TRS S) and
l2 → r2 (from a TRS T ) be two rewrite rules without any common variables
and suppose l1 has an overlap on l2 at position p. Let σ be a most general
unfier for l1 and l2|p. The critical pair is the following:

〈l2[r1]pσ, r2σ〉
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CP (S, T ) is the set of all critical pairs originating from overlaps with l1 → r1
in S on l2 → r2 in T . If no rule in S overlaps on a rule in T the set of critical
pairs is empty.

Note: For further discussion the ordering will be important: CP (S, T ) 6=
CP (T, S).

Definition 2.8. An outer (inner) critical pair denotes a critical pair where the
overlap occurs at the position p = ε (p > ε). The abbreviation CPout (CPin) is
used for the set of outer (inner) critical pairs.

Definition 2.9. A TRS R is called left-linear (linear) if for every rewrite rule
l → r in R the term(s) l (and r) is (are) linear, which means that no variable
occurs more often than once in l (and r separately).

Each of the three following sections presents a theorem which will be used
to show confluence of a TRS including AC-rules. Every theorem is followed by
a step by step procedure in which the theorem is integrated completely (in [1,
Definition 4.7] called “concrete reduction-preserving completion procedure”),
and illustrated by an extensive example. The step by step procedure is needed
because the theorems cannot solve every problem directly.
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3 Confluence Criterion

3 Confluence Criterion

Definition 3.1. A TRS P is called reversible if for all rewrite rules l→ r of P
the condition r

∗−→P l holds.

Theorem 3.2. [1, Theorem 3.7] Let S, P be TRSs such that S is left-linear
and terminating and P is reversible. If

(i) CP (S, S) ⊆ ∗−→S ◦ q←P∪P−1 ◦ ∗←−S

(ii) CPin(P ∪ P−1, S) = ∅

(iii) CP (S, P ∪ P−1) ⊆ ∗−→S ◦ q→P∪P−1 ◦ ∗←−S

then S ∪ P is confluent.

Note: q←P∪P−1 = q→P∪P−1

Before we present the step by step procedure we explain shortly the comple-
tion idea. In this procedure repeatedly rewrite rules are added to S and/or P
such that the conditions of Theorem 3.2 are satisfied. The newly added rules
can be simulated by the original rules, guaranteeing that the original TRS is
confluent.

Lemma 3.3. Let R be a TRS and s, t two terms. If s
∗−→R t and the TRS

R′ = R ∪ {s→ t} is confluent, then R is confluent.

Definition 3.4. (Step by step procedure)

Input: TRS R
Output: Success or Failure

Step 1: Set R0 := R and i := 0.

Step 2: Choose Si ∪ Pi = Ri such that Si is left-linear and terminating, Pi is
reversible and CPin(Pi∪P−1i , Si) = ∅. If Si and Pi do not exist return Failure.

Step 3: Let U := ∅. For each 〈p, q〉 ∈ CP (Si, Pi ∪ P−1i ) perform p
!→Si p

′ and

q
!→Si q

′. If p′ q→P∪P−1 q′ does not hold, set U := U ∪ {q → p′}. If U 6= ∅
choose a non-empty U ′ ⊆ U and continue with Step 2 with Ri+1 := Ri ∪ U ′
and i := i+ 1.

Step 4: Let U := ∅. For each 〈p, q〉 ∈ CP (Si, Si) perform p
!→Si p

′ and

q
!→Si q

′. If p′ q←P∪P−1 q′ does not hold, set U := U ∪ {p′ ≈ q′}. If U = ∅ return

Success. Otherwise choose at least one rewrite rule of U ′ ⊆ (U ∪ U−1) ∩ ∗↔Pi

and continue with Step 2 with Ri+1 := Ri ∪ U ′ and i := i+ 1.

Note: The originate TRS R is confluent, if we obtain a Success as Output.

Example 3.5. Let
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R =

{
1 : x ∗ 1→ x 2 : x ∗ y → y ∗ x
3 : x ∗ 0→ 0 4 : (x ∗ y) ∗ z → x ∗ (y ∗ z).

Step 1: Set R0 = R and i = 0.

Step 2: We have to split TRS R0 into two TRSs S0 and P0, where S0 has to
be left-linear and terminating and P0 has to be reversible.

We choose S0 = {1, 3} and P0 = {2, 4} and prove the conditions:

Left-linearity: S0 is left-linear as the left-hand sides of the rules 1 and
3 contain the single variable x, which occurs in both rules at most once.

Termination: S0 is terminating as the right-hand sides of the rules 1
and 3 are proper subterms of their left-hand sides.

Reversibility: To show that P0 is reversible both rules in P0 have to
be reversible:

2: y ∗ x 2−→P0 x ∗ y X

4: x ∗ (y ∗ z) 2−→P0 (y ∗ z) ∗ x 2−→P0 (z ∗ y) ∗ x 4−→P0 z ∗ (y ∗ x)
2−→P0

(y ∗ x) ∗ z 2−→P0 (x ∗ y) ∗ z X

The conditions are satisfied for S0 and P0. Furthermore, CPin(P0 ∪
P−10 , S0) = ∅, so we continue with Step 3.

Step 3: In the following we generate the set CP (S0, P0 ∪ P−10 ):

Note: The abbreviation x′ denotes the step where rule x of the set P−10

was applied. Furthermore, 2 ≡ 2′.

(a)

x ∗ 1

x 1 ∗ x

21

(b)

(x ∗ 1) ∗ z

x ∗ z x ∗ (1 ∗ z)

41

(c)

(x ∗ y) ∗ 1

x ∗ y x ∗ (y ∗ 1)

41

(d)

x ∗ (y ∗ 1)

x ∗ y (x ∗ y) ∗ 1

4′1

(e)

x ∗ 0

0 0 ∗ x

23

(f)

(x ∗ 0) ∗ z

0 ∗ z x ∗ (0 ∗ z)

43
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3 Confluence Criterion

(g)

(x ∗ y) ∗ 0

0 x ∗ (y ∗ 0)

43

(h)

x ∗ (y ∗ 0)

x ∗ 0 (x ∗ y) ∗ 0

4′3

For the eight critical pairs we calculate
!→S0 of both sides and then the

additional q→P0∪P−1
0

-steps have to be performed:

(a) no step possible, so U := U ∪ {1 ∗ x→ x}
(b) no step possible, so U := U ∪ {x ∗ (1 ∗ z)→ x ∗ z}

(c) x ∗ y 1←−S0 x ∗ (y ∗ 1) X

(d) x ∗ y 1←−S0 (x ∗ y) ∗ 1 X

(e) no step possible, so U := U ∪ {0 ∗ x→ 0}
(f) no step possible, so U := U ∪ {x ∗ (0 ∗ z)→ 0 ∗ z}

(g) 0
3←−S0 x ∗ 0

3←−S0 (x ∗ (y ∗ 0)) X

(h) x ∗ 0
3−→S0 0

3←−S0 ((x ∗ y) ∗ 0) X

Because of the non-joinable critical pairs (a), (b), (e) and (f), confluence
is not shown yet. To make these four critical pairs joinable we have to
add further rules. We choose U ′ ⊆ U to consist of the following two rules:

5 : 1 ∗ x→ x

6 : 0 ∗ x→ 0

We only take these two rules from the set U , because the left-hand side of
5 and 6 are proper subterms of the left-hand sides of the other two rules
in U and with them we are able to make the critical pairs (a), (b), (e) and
(f) joinable.
We set R1 = R0 ∪ {5, 6} and i = 1 and continue with Step 2.

Step 2: We choose

S1 = {1, 3, 5, 6}.

We have to check all conditions again, except the reversibility of P1, as
P1 is equal to P0. S1 is left-linear as the left-hand sides of the rules 1,
3, 5 and 6 contain the single variable x, which occurs in all four rules at
most once. S1 is terminating as the right-hand sides of the rules 1, 3, 5
and 6 are proper subterms of their left-hand sides. The conditions for S1
and P1 are satisfied and CPin(P1 ∪ P−11 , S1) = ∅.
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Step 3: It is sufficient to calculate CP (S1\{1, 3}, P1∪P−11 ), as CP ({1, 3}, P1∪
P−11 ) is joinable with the rules 5 and 6. In the following we generate the
set CP ({5, 6}, P1 ∪ P−11 ):

(i)

1 ∗ x

x x ∗ 1

25

(j)

(1 ∗ y) ∗ z

y ∗ z 1 ∗ (y ∗ z)

45

(k)

1 ∗ (y ∗ z)

y ∗ z (1 ∗ y) ∗ z

4′5

(l)

x ∗ (1 ∗ z)

x ∗ z (x ∗ 1) ∗ z

4′5

(m)

0 ∗ x

0 x ∗ 0

26

(n)

(0 ∗ y) ∗ z

0 ∗ z 0 ∗ (y ∗ z)

46

(o)

0 ∗ (y ∗ z)

0 (0 ∗ y) ∗ z

4′6

(p)

x ∗ (0 ∗ z)

x ∗ 0 (x ∗ 0) ∗ z

4′6

(i) x
1←−S1 x ∗ 1 X

(j) y ∗ z 5←−S1 1 ∗ (y ∗ z) X

(k) y ∗ z 5←−S1 (1 ∗ y) ∗ z X

(l) x ∗ z 1←−S1 (x ∗ 1) ∗ z X

(m) 0
3←−S1 x ∗ 0 X

(n) 0 ∗ z 6−→S1 0
6←−S1 0 ∗ (y ∗ z) X

(o) 0
6←−S1 0 ∗ z 6←−S1 (0 ∗ y) ∗ z X

(p) x ∗ 0
3−→S1 0

6←−S1 0 ∗ z 3←−S1 (x ∗ 0) ∗ z X

We observe that all critical pairs are joinable and continue with Step 4.

Step 4: In the following we generate the set CP (S1, S1):
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3 Confluence Criterion

(a′)

0 ∗ 0

0 0

16

(b′)

0 ∗ 1

0 0

36

(c′)

1 ∗ 0

0 0

15

(d′)

1 ∗ 1

1 1

35

All critical pairs are trivial, so criterion (i) of Theorem 3.2 holds. We have
shown, that

S1 ∪ P1 is confluent

and Success is returned. So our starting TRS R is confluent.

In the following we give an example, where the procedure needs further im-
provements.

Example 3.6. Let

R =

{
1 : 1 ∗ y → y 2 : x ∗ y → y ∗ x
3 : x ∗ f(y)→ f(x ∗ y) 4 : (x ∗ y) ∗ z → x ∗ (y ∗ z).

The only possible combination is to set S0 = {1, 3} and P0 = {2, 4}. S0 is left-
linear and terminating and P0 is reversible. We have CPin(P0 ∪ P−10 , S0) = ∅.
So the problem occurs in CP (S0, P0 ∪ P−10 ). We get eight critical pairs, where
four of them are not joinable. So we have to add the following three rules:

5 : y ∗ 1→ y

6 : f(y) ∗ x→ f(x ∗ y)

7 : x ∗ (f(y) ∗ z)→ f(x ∗ y) ∗ z

We need all three rules, because with them all eight critical pairs are joinable.
The only possible combination is to set S1 = {1, 3, 5, 6, 7} and P1 = {2, 4}. So
S1 is left-linear and terminating and P1 is reversible. But now we get some
critical pairs in CPin(P1 ∪ P−11 , S1). We will not come to a satisfying solution.
Definition 3.4 without improvements gives us no confluence for this example.

Definition 3.7. We improve the step by step procedure by additional steps.
The first two improvents can be obtained during Step 2.

Step 2a: If CPin(Pi∪P−1i , Si) 6= ∅ and ∃ l→ r ∈ Si with CPin(Pi∪P−1i , {l→
r}) 6= ∅ and ∃ r′ with r ↔Pi r

′, we set Ri+1 := (Ri\{l → r}) ∪ {l → r′} and
i := i+ 1.

Step 2b: Let 〈p, q〉 ∈ CPin(Pi ∪ P−1i , Si) and perform q
!→Si q

′. We set
Ri+1 := Ri ∪ {p→ q′} and i := i+ 1.

The next improvement can be obtained when continuing with Step 2 after
having performed Step 3.
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Step 3a: We set Si := Si−1 and Pi := Pi−1. If ∃ l → r ∈ Si and ∃ r′ with

r ↔Pi r
′ and a critical pair 〈p, q〉 ∈ CP ({l→ r}, Pi∪P−1i ) we perform p

!→Si p
′

and q
!→Si q

′. If p′ q→P∪P−1 q′ does not hold, we set Ri+1 := (Ri\{l → r}) ∪
{l→ r′} and i := i+ 1.

Finally, the last improvement can be obtained when continuing with Step 2
after having performed Step 4.

Step 4a: We set Si := Si−1 and Pi := Pi−1. If ∃ l → r ∈ Si and ∃ r′
with r ↔Pi r

′ and a critical pair 〈p, q〉 ∈ CP ({l → r}, Si) ∪ CP (Si, {l → r})
we perform p

!→Si p
′ and q

!→Si q
′. If p′ q←P∪P−1 q′ does not hold, we set

Ri+1 := (Ri\{l→ r} ∪ {l→ r′} and i := i+ 1.

Example 3.8. Let

R =

{
1 : 1 ∗ y → y 2 : x ∗ y → y ∗ x
3 : x ∗ f(y)→ f(x ∗ y) 4 : (x ∗ y) ∗ z → x ∗ (y ∗ z).

The only possible combination is to set S0 = {1, 3} and P0 = {2, 4}. S0 is left-
linear and terminating and P0 is reversible. We have CPin(P0 ∪ P−10 , S0) = ∅.
If we calculate CP (S0, P0∪P−10 ), we get eight critical pairs, where four of them
are not joinable. So we add the following two rules:

5 : y ∗ 1→ y

6 : f(y) ∗ x→ f(x ∗ y)

We need only these two rules, because with the improvement of 3a, we change
rule 6 to rule 7 and then all computed critical pairs are joinable. Rule 7 looks
like this:

7 : f(y) ∗ x→ f(y ∗ x)

We can do this, because we set P1 = P0, S1 = S0 and we have a rule in P1

which allows f(x ∗ y)→P1 f(y ∗ x). So we have the following sets:

S2 = {1, 3, 5, 7}, P2 = {2, 4}

Now CPin(P2∪P−12 , S2) = ∅. CP (S2, P2∪P−12 ) has sixteen (eight new) joinable
elements. CP (S2, S2) has four joinable elements. So with the improvements
this example can be shown to be confluent.

4 Confluence Criterion using Parallel Critical Pairs

In the next example Theorem 3.2 fails at showing confluence.
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4 Confluence Criterion using Parallel Critical Pairs

Example 4.1. Let

R =

{
1 : f(a, a, a)→ f(c, c, c) 2 : a→ d

3 : d→ a

The only possible combination is to set S0 = {1} and P0 = {2, 3}. S0 is left-
linear and terminating and P0 is reversible. But CPin(P0 ∪ P−10 , S0) is not
empty. We get as one of the problematic critical pairs: 〈f(d, a, a), f(c, c, c)〉.
We can neither apply improvement 2a nor improvement 2b. So we will not come
to a satisfying solution. Theorem 3.2 gives us no confluence for this example.

Definition 4.2. Let s1, . . . , sn, t be n+1 terms without common variables and
p1, . . . , pn be n pairwise parallel non-variable positions in t. The terms s1, . . . , sn
parallel overlap on term t at positions p1, . . . , pn, if {s1 ≈ t|p1 , . . . , sn ≈ tn|pn}
is unifiable.

Definition 4.3. A parallel critical pair is generated when there exists a parallel
overlap between left-hand sides of n+ 1 rewrite rules. Let l1 → r1, . . . , ln → rn
(from a TRS S) and l→ r (from a TRS T ) be n+ 1 rewrite rules without any
common variables and suppose l1, . . . , ln has a parallel overlap on l at parallel
positions p1, . . . , pn. The most general unifier for the unification problem {li ≈
l|pi | 1 ≤ i ≤ n} is called σ. The parallel critical pair is the following:

〈l[r1, . . . , rn]p1,...,pnσ, rσ〉

PCP (S, T ) is the set of all parallel critical pairs originating from overlaps with
l1 → r1, . . . , ln → rn in S on l→ r in T . If no rule in S overlaps on a rule in T
the set of parallel critical pairs is empty. We write 〈l′[r1, . . . , rn]p1,...,pnσ, r

′σ〉X
if X =

⋃
1≤i≤n Var(l′σ|pi).

Note: CP (S, T ) ⊆ PCP (S, T ) always holds.

Definition 4.4. The term outer (inner) parallel critical pair denotes a parallel
critical pairs with p1 = ε ( pi > ε for all i). The abbreviation PCPout (PCPin)
is used.

Note: For two TRSs S and T we have: PCPout(S, T ) = CPout(S, T ).

Example 4.5. Let

R =
{

1 : f(a, a, a)→ c 2 : a→ b

The first step is to calculate the critical pairs CP (R,R):

(a) 〈f(b, a, a), c〉

(b) 〈f(a, b, a), c〉

(c) 〈f(a, a, b), c〉

10



Then, we calculate the parallel critical pairs with an increasing number of
parallel-overlaps, starting with two parallel positions:

(d) 〈f(b, b, a), c〉

(e) 〈f(b, a, b), c〉

(f) 〈f(a, b, b), c〉

Finally, there is one parallel critical pair with three parallel-positions:

(g) 〈f(b, b, b), c〉

The union of the seven generated parallel critical pairs is:

PCP (R,R) = {(a), (b), (c), (d), (e), (f), (g)}

Theorem 4.6. [1, Theorem 3.9] Let P, S be TRSs such that S is left-linear
and terminating and P is reversible. Suppose

(i) CP (S, S) ⊆ ∗−→S ◦ q←P∪P−1 ◦ ∗←−S

(ii) for all 〈u, v〉X ∈ PCPin(P ∪ P−1, S), u
∗−→S u′ q←V,P∪P−1 v′

∗←−S v for
some u′,v′ and V satisfying

⋃
q∈V Var(v′|q) ⊆ X

(iii) CP (S, P ∪ P−1) ⊆ ∗−→S ◦ q→P∪P−1 ◦ ∗←−S

then S ∪ P is confluent.

Note: Theorem 4.6 subsumes Theorem 3.2.

The step by step procedure is a straightforward modification of Definition
3.4. So let’s look at an example where Theorem 3.2 does not apply but Theo-
rem 4.6 can show confluence.

Example 4.7. Consider the TRS R of Example 4.1

Note: In this example there are no variables, so we omitted to check the variable
condition in (ii) of Theorem 4.6.

Step 1: Set R0 = R and i = 0.

Step 2: We have to split TRS R0 into two TRSs S0 and P0, where S0 has to
be left-linear and terminating and P0 has to be reversible.

We choose S0 = {1} and P0 = {2, 3} and prove the conditions:

Left-linearity: S0 is left-linear as the left-hand side of the rule 1 has
no variables.

11



4 Confluence Criterion using Parallel Critical Pairs

Termination: S0 is terminating using LPO with precedence a > c.

Reversibility: To show that P0 is reversible all rules in P0 have to be
reversible:

2: d
3−→P0 a X

3: a
2−→P0 d X

The conditions are satisfied for S0 and P0. So we continue with Step 3.

Step 3: In the following we generate the set PCPin(P0 ∪ P−10 , S0):

(a)

f(a, a, a)

f(d, a, a) f(c, c, c)

13

(b)

f(a, a, a)

f(a, d, a) f(c, c, c)

13

(c)

f(a, a, a)

f(a, a, d) f(c, c, c)

13

(d)

f(a, a, a)

f(d, d, a) f(c, c, c)

13, 3

(e)

f(a, a, a)

f(a, d, d) f(c, c, c)

13, 3

(f)

f(a, a, a)

f(d, a, d) f(c, c, c)

13, 3

(g)

f(a, a, a)

f(d, d, d) f(c, c, c)

13, 3, 3

For the seven critical pairs we calculate
!→S0 of both sides and then the

additional q←P0∪P−1
0

-steps have to be performed:
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(a) no step possible, so U := U ∪ {f(d, a, a)→ f(c, c, c)}
(b) no step possible, so U := U ∪ {f(a, d, a)→ f(c, c, c)}
(c) no step possible, so U := U ∪ {f(a, a, d)→ f(c, c, c)}
(d) no step possible, so U := U ∪ {f(d, d, a)→ f(c, c, c)}
(e) no step possible, so U := U ∪ {f(a, d, d)→ f(c, c, c)}
(f) no step possible, so U := U ∪ {f(d, a, d)→ f(c, c, c)}
(g) no step possible, so U := U ∪ {f(d, d, d)→ f(c, c, c)}

The critical pairs are not joinable, so confluence is not shown yet. To
make these critical pairs joinable we have to add further rules. The only
choice for U ′ ⊆ U is U ′ = U :

4 : f(d, a, a)→ f(c, c, c)

5 : f(a, d, a)→ f(c, c, c)

6 : f(a, a, d)→ f(c, c, c)

7 : f(d, d, a)→ f(c, c, c)

8 : f(a, d, d)→ f(c, c, c)

9 : f(d, a, d)→ f(c, c, c)

10 : f(d, d, d)→ f(c, c, c)

We set R1 = R0 ∪ {4, 5, 6, 7, 8, 9, 10} and i = 1 and continue with Step 2.

Step 2: We choose

S1 = {1, 4, 5, 6, 7, 8, 9, 10}.

We have to check all conditions again, except the reversibility of P1, as
P1 is equal to P0. S1 is left-linear as the left-hand sides of the rules
1, 4, 5, 6, 7, 8, 9 and 10 have no variables. S1 is terminating using LPO
with precedence a > d > c. The conditions for S1 and P1 are satisfied.
So we continue with Step 3.

Step 3: It is sufficient to calculate PCPin(P1 ∪P−11 , S1\{1})X , as PCPin(P1 ∪
P−11 , {1}) is joinable with the rules 4, 5, 6, 7, 8, 9 and 10. The set PCPin(P1

∪ P−11 , {4, 5, 6, 7, 8, 9, 10}) has 49 joinable critical pairs. So we continue
with Step 4.

Step 4: The set CP (S1, P1 ∪ P−11 ) = ∅. So we continue with Step 5.

Step 5: The set CP (S1, S1) = ∅.
All properties are fullfilled, so we have shown that

S1 ∪ P1 is confluent

and Success is returned. So our starting TRS R is confluent.
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In the next example Theorem 4.6 fails to show confluence.

Example 5.1. Let

R =


1 : f(g(x), y)→ g(f(x, y)) 2 : g(x)→ g(g(x))

3 : f(x, g(y))→ g(f(x, y)) 4 : g(g(x))→ g(x)

5 : f(x, y)→ f(y, x)

The only possible combination is to set S0 = {1, 3} and P0 = {2, 4, 5}. S0 is
left-linear and terminating and P0 is reversible. But in PCPin(P0 ∪ P−10 , S0)
we get one of the problematic parallel critical pairs: 〈f(g(g(x)), y), g(f(x, y))〉X
with X = {x}. We can still go from f(g(g(x)), y)

1−→S0 g(f(g(x), y))
1−→S0

g(g(f(x, y))) and there is a rule in P0 that makes g(g(f(x, y))) and g(f(x, y))
joinable. But that harms the variable condition ({x, y} * {x}). The only thing
we can do is to add a rule from f(g(g(x)), y) → g(f(x, y)). In the following
steps we get for every i ∈ N the same problem in PCPin(Pi ∪ P−1i , Si) with
more g′s on the left-hand side of the parallel critical pair. So we will not reach
a satisfying solution. Theorem 4.6 gives us no confluence for this example.

Theorem 5.2. [1, Theorem 3.13] Let P, S be TRSs such that S is linear and
terminating and P is reversible. Suppose

(i) CP (S, S) ⊆ ∗−→S ◦
=←−P∪P−1 ◦ ∗←−S

(ii) CP (P ∪ P−1, S) ⊆ ∗−→S ◦
=←−P∪P−1 ◦ ∗←−S

(iii) CP (S, P ∪ P−1) ⊆ ∗−→S ◦
=−→P∪P−1 ◦ ∗←−S

then S ∪ P is confluent.

The difference between Theorem 5.2 and Theorem 4.6 is listed in the follow-
ing:

• Theorem 5.2 has more restrictions:

– It works only for linear TRSs.

– We can not perform a parallel P ∪P−1-step in (i), (ii) or in (iii), we
can only do single P ∪ P−1-steps.

• Theorem 5.2 has fewer restrictions:

– In (ii) we have to check only the set of critical pairs CP (P ∪P−1, S)
and not the set of parallel critical pairs.

– We have no set of parallel critical pairs, so we do not need a variable
condition as in Theorem 4.6.

The step by step procedure is a straightforward modification of Definition 3.4.
So let’s look at an example where Theorem 4.6 does not apply but Theorem
5.2 can show confluence.

14



Example 5.3. Consider the TRS R of Example 5.1

Step 1: Set R0 = R and i = 0.

Step 2: We have to split TRS R0 into two TRSs S0 and P0, where S0 has to
be linear and terminating and P0 has to be reversible.

We choose S0 = {1, 3} and P0 = {2, 4, 5} and prove the conditions:

Linearity: S0 is linear as the left and the right-hand sides of the rules 1
and 3 contain the variables x and y at most once.

Termination: S0 is terminating using LPO with precedence f > g.

Reversibility: To show that P0 is reversible all rules in P0 have to be
reversible:

2 : g(g(x))
4−→P0 g(x) X

4 : g(x)
2−→P0 g(g(x)) X

5 : f(y ∗ x)
5−→P0 f(x ∗ y) X

The conditions are satisfied for S0 and P0. So we continue with Step 3.

Step 3: In the following we generate the set CP (P0 ∪ P−10 , S0):

(a)

f(g(x), y)

f(g(g(x)), y) g(f(x, y))

12

(b)

f(x, g(y))

f(x, g(g(y))) g(f(x, y))

32

(c)

f(g(x), y)

f(y, g(x)) g(f(x, y))

15

(d)

f(x, g(y))

f(g(y), x) g(f(x, y))

35
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For the four critical pairs we calculate
!→S0 of both sides and then the

additional
=←−P0∪P−1

0
-steps have to be performed:

(a) f(g(g(x)), y)
1−→S0 g(f(g(x), y))

1−→S0 g(g(f(x, y)))
2←−P0 g(f(x, y)) X

(b) f(x, g(g(y)))
3−→S0 g(f(x, g(y)))

3−→S0 g(g(f(x, y)))
2←−P0 g(f(x, y)) X

(c) f(y ∗ g(x))
3−→S0 g(f(y, x))

5←−P0 g(f(x, y)) X

(d) f(g(y) ∗ x)
1−→S0 g(f(y, x))

5←−P0 g(f(x, y)) X

All critical pairs are joinable. So continue with Step 4.

Step 4: In the following we generate the set CP (S0, P0 ∪ P−10 ):

(a′)

f(g(x), y)

g(f(x, y)) f(y, g(x))

51

(b′)

f(x, g(y))

g(f(x, y)) f(g(y), x)

53

For the two critical pairs we calculate
!→S0 of both sides and then the

additional
=−→P0∪P−1

0
-steps have to be performed:

(a′) g(f(x, y))
5−→P0 g(f(y, x))

3←−S0 f(y ∗ g(x)) X

(b′) g(f(x, y))
5−→P0 g(f(y, x))

1←−S0 f(g(y) ∗ x) X

All critical pairs are joinable. So continue with Step 5.

Step 5: In the following we generate the set CP (S1, S1).

(a′′)

f(g(x), g(y))

g(f(x, g(y)) g(f(g(x), y))

13

For the critical pair we calculate
!→S0 of both sides and then the additional

=←−P0∪P−1
0

-steps have to be performed:

(a′′) g(f(x, g(y))
3−→s0 g(g(f(x, y)))

1←−S0 g(f(g(x), y)) X

16



All properties are fullfilled, so we have shown that

S0 ∪ P0 is confluent

and Success is returned. So our starting TRS R is confluent.
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6 Conclusion

We presented three methods to show confluence of TRSs with non-terminating
rewrite rules. The key point of the methods is to split the TRS into two parts,
a terminating part and a potentially non-terminating part. These methods
are able to deal with associative and commutative rules, where other methods
like Newman’s Lemma fail. For implementing these rules we identified two
main challenges. The first main challenge is the efficient splitting of the input
term rewriting system. In [1] and in [2] a possible solution for this challenge
is presented. Instead of trying all possible combinations they suggest to try
combinations based on a certain heuristic. The second key challenge in pro-
gramming these methods is to choose a subset U ′ efficiently. In [1] and [2] this
choice is not described. A first approach would be to check wether the left-hand
side of a certain rule s in U is a proper subterm of the left-hand side of another
rule t in U . If that is the case U ′ should not contain t. If there are no such
rules s and t in U we set U ′ = U .
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