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Abstract

In this seminar report, we introduce the theorem prover Isabelle, Constructive
Type Theory and dependent types. Furthermore, we present a dependent list
type which we developed with the technologies mentioned above, and inspect
the strengths and weaknesses of our approach.
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1 Introduction

Isabelle is a generic theorem prover, which can be used to define and reason
about different object-logics. We used it in conjunction with Constructive Type
Theory (CTT), which is a type theory supporting dependent types. Dependent
types are types which depend on values.

Consider the following C code as motivation for our work:

int main ()
{
int array[10];
for (int 1 = 0; 1 <= 10; i++)
array [1] = 0;
return 0;

}

In this example, we show a programming error which is quite common — ac-
cessing array values outside their bounds. Such errors are not easy to detect at
compile time, because the type of the array is just int* and does not carry any
information about the size of the array, thereby making bounds determination
difficult.

To shift the burden of determining array size from the compiler to the user,
one can use a dependent list type, which stores the list length in the type. This
makes it easy for the compiler to find out-of-bounds errors, because it has the
length of each list at hand — in the type! On the other hand, proving the length
of lists takes users additional time and requires experience.

We successfully implemented a dependent list type as motivated above in
Isabelle using CTT, and wrote a number of proofs of list length to see how
practicable our approach is. It turned out that the list type works well, but
our proofs were unneccessarily big, which may be a result of missing tactics for
CTT in Isabelle.

This document is structured as follows: In section §2, we describe the theorem
prover Isabelle and give examples of its syntax. In section §3, we introduce
Constructive Type Theory, which we’ll later use together with Isabelle. To
understand Constructive Type Theory, one needs to know about dependent
types, which we explain in section §4. In section §5, we present our dependent
list type in detail and describe its implementation as well as proofs about it. In
section §6, we conclude by stating results of our work and giving an outlook to
future work. We present the full proofs in the appendix.

1.1 Related work

While Isabelle is a logical framework allowing several object-logics to be imple-
mented on top of it, there are theorem provers which allow only one object-logic
to be used: For example, Coq [6] has a fixed logic, namely the Calculus of Con-
structions, which also allows dependent types to be implemented. On the other
hand, other logical frameworks beside Isabelle supporting different object-logics
exist, for example Twelf [§].



2 Isabelle

’ Operator Description
== Implication
= Equality
A Universal quantification
[p1,p2;---,pn] = ¢ | short-hand notation for p; = ps = ... = p, = ¢

Table 1: Operators in Isabelle’s meta-logic "Pure’.

There exist several programming languages which support dependent types:
For example, Agda [12] is a functional programming language with dependent
types, which was developed by Ulf Norell. A similar language is Epigram [1],
which was developed by Conor McBride and James McKinna. Dependent types
are also used in the programming language F*, which is a programming language
for distributed applications developed by Microsoft [16]. For an interesting
comparison between some of the tools mentioned, see [18].

An alternative to verifying program correctness via type checking is static code
analysis: Static code analysers try to verify properties in computer programs
via various methods without having additional type information available. One
programming language which was designed to support static code analysis is
Spec# [5]. The language is a superset of C# and features constructs for e.g.
preconditions, postconditions, and object invariants. These constructs are then
used by Spec+#’s static code verifier ‘Boogie’ in checking programs.

2 lIsabelle

Isabelle is a theorem prover which was designed with the aim of supporting a
variety of different logical systems. It is written in Standard ML and it features
a hand-checked kernel, which assures the correct function of the theorem prover.
To get an overview of Isabelle, [14] is a good introduction by Larry Paulson,
who is one of the driving forces behind Isabelle. Also, the Isabelle tutorial and
other documentation shipped with Isabelle are invaluable resources, although
they mostly concentrate on Isabelle/HOL.

Different logical systems can be defined upon Isabelle’s meta-logic ‘Pure’,
which only contains a small number of logical operators; see table 1. The meta-
logic is a fragment of intuitionistic higher-order logic, see [13].

Isabelle ships several logical systems by default (see figure 1); among these
are:

e HOL: Higher-Order Logic, by far the most used logic in Isabelle.

e [FOL: Intuitionistic First-Order Logic. Forms the base of several other
logics.

— FOL: First-Order Logic. [FOL plus the classical axiom.

x ZF: Zermelo-Fraenkel Set Theory. The second-most used logic
in Isabelle after HOL.
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Figure 1: Logical systems in Isabelle.

x LCF: Logic for Computable Functions. Historically relevant as
logic of the theorem prover Edinburgh LCF from 1972, which
motivated the development of the programming language ML.
The successor of LCF, the theorem prover HOL, later motivated
the development of Isabelle.

e CTT: Constructive Type Theory. We will mostly be concerned with it in
this paper and discuss it below.

Forming object logics in Isabelle involves several tasks:
e Defining types and constants.
e Postulating axioms for these constants.
e Deriving lemmata from the axioms.

Consider an excerpt from the Isabelle version of IFOL as an example:

typedecl o
axiomatization
False :: o and
conj :: "[o, o] = o" (infixr "&" 35) and
disj :: "[o, o] = o" (infixr "/" 30) and
imp :: "[o, o] = o" (infixr "—" 25)
where

conjI: "[ P; Q@ ] = P&Q" and
conjunctl: "P&Q —> P" and
conjunct2: "P&Q — Q" and

disjIl: "P —> P|/Q" and
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disjI2: " — P|Q" and
disjE: "[ PI§; P =— R; @ =— R ] = R" and

impI: "(P = ) = P—Q" and
mp: " P—@; P ] = Q" and

FalseE: '"False — P"

In this excerpt, there is a type o declared first, which is the type of proposi-
tions. Then there is a number of constants introduced, namely ‘False’, ‘conj’,
‘disj’ and ‘imp’. These constants each have a type; for example, the type of
‘False’ is just o. Similarly, the type of the other constants in this excerpt is
[0,0] = o, meaning that they are functions which take a pair of propositions
and return a proposition. Along with the type of the constants, short-hand
notation is defined as well, to allow writing logical symbols with characters like
‘&', ¢/ and ‘— .

In the second part of the excerpt, the axioms for the constants are introduced.
For example, the axiom ‘conjl’ states that assuming P and @ hold, P&Q holds.
Conversely, if we have P&(Q), then by ‘conjunctl’ and ‘conjunct2’ we can say
that P as well as @ hold.

After postulating axioms, we derive lemmata from the given axioms to show
certain properties of the logical system. For example, the following lemma
(taken from IFOL) states that if P&Q holds and [P;Q] = R holds as well,
then R holds:

lemma conjE:
assumes major: "P & Q"
and r: "[ P; Q ] = R"
shows R
apply (rule r)
apply (rule major [THEN conjunctl])
apply (rule major [THEN conjunct2])
done

3 Constructive Type Theory

3.1 History

Constructive Type Theory, also called Intuitionistic Type Theory or Martin-
Lof’s Type Theory, was devised by Swedish logician Per Martin-Lo6f in 1971 [9].
The first version of his type theory was impredicative, meaning that it defined
an object by referring to itself. In particular, the theory contained a reflection
principle

Uel,

meaning that the universe U is an element of itself. However, this made the
theory inconsistent, as famously shown by Girard’s paradox — see [15]. As a
result, Martin-Lof developed new, consistent versions of his type theory, one of
which is implemented in Isabelle. An excellent introduction to CTT is [11], and
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a related document by the same authors discusses CT'T in greater length and
detail [10].

3.2 Types and Instances

When implementing a logic like CTT in Isabelle, we have to think about the
sorts of objects in our logic. For example, in IFOL we had only one sort, namely
Church’s type o, the type of propositions. In contrast, in CTT we have two sorts,
namely:

e type (abbreviated t)

e instance (abbreviated i)

To explain these two sorts, consider natural numbers. In CTT, natural numbers
are defined by first specifying that there exists a type representing the type of
natural numbers. We express that by saying

N type,

meaning that NV is a type.
Now we can describe the elements or instances of this type, namely:

0eN
n € N = succ(n) € N,

where succ is a function from instances to instances. 0 € N means that the
constant 0 is an instance of the type N, and n € N means that the variable n
is an instance of N. That way we have defined our type of natural numbers by
saying that N is a type, then specifying which elements are instances of that
type. Of course, for a real natural number type, one requires more axioms than
given here, but this is just to give you an intuition how types and instances
work. You can also think of types as sets, which you can define by specifying
which elements they contain.

3.3 Propositions as types

You might wonder at this point how propositions can be represented in CTT,
when there does not seem to be a sort of propositions. Actually, there is a way
to define propositions in CTT:

’A proposition is identified with the type of its proofs.

Let’s assume we want to prove an implication, namely P D (). Then we need
to find at least one function which, given any element of type P, always returns
an element of type Q. If we can find such a function, then it will have the type
P— Q.

Alternatively, let’s assume we want to prove P A ). Then we need to find
a pair which contains a proof p of P and a proof ¢ of (), so the pair would be
(p,q). That pair would then be of the type P x @, the cartesian product of P
and Q.

In fact, this way to interpret proofs is consistent with the Curry-Howard
isomorphism and the Brouwer-Heyting—Kolmogorov interpretation, see [9, 17].
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3.4 Functions

To describe functions in CT'T, we first have to describe the kinds of equivalence
there exist in CTT. Because we have two types available in CTT, it makes sense
to define equality for both of these types, namely:

e Type equality: Can be expressed by writing A = B, meaning that two
types A and B are equal.

e Instance equality: Can be expressed by writing a = b € A, meaning that
two instances are equal and they both are elements of type A.

Now we can describe functions in CTT. Functions in CTT can be defined with
a Church-style lambda calculus, so an example would be

Mz € N.succ(x),

which is the function returning the successor of a natural number. Note that at
this point we wrote N instead of A; this is to distinguish our object-logic lambda
functions from meta-logic Curry-style lambda functions, which are provided by
Isabelle.

Functions are instances in CTT, meaning that they have a type. So what
type does the function above have? It is the type of functions from N to N,
which is written as

N — N,

therefore
Nz € N.suce(x) € N — N.

Application works as following: Assuming we have an identity function for a
type A
NeeAxeA— A,

we can apply it to an instance as following:
(Nzx € A.x)a,
where ¢ is the application operator. By S-reduction, we can then conclude that
(Nx € Ax)a=a€ A,

provided that a € A.
Function types like N — N are just a special case of a more general function
type, namely the dependent product, which has the general form

Ila € A.B(a).

This is the type of functions which take instances a of type A and return in-
stances of type B(a), where B is a type depending on an instance a. In case of
the function type N — N, we could write that as

IIn € N.B(n),

where B(n) = N for any n. Actually, B can be defined in that case as An.N,
which is a meta-logic function returning the type N for any n.

At this point, it may be still unclear what a type depending on an instance
might be. To remedy this, let’s study dependent types.
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4 Dependent types

In typed lambda calculi, we have two different sorts: types and terms." These
two sorts can depend on each other in several ways, motivating dependent types.
Good introductions to dependent types and to lambda calculus in general can
be found in |3, 4].

The kinds of dependencies between types and terms can be shown with the
A-cube (see figure 2): At the corners of the A-cube, different lambda calculi
reside, each allowing different sets of dependencies between types and terms.
The arrow — stands for the inclusion relation, meaning that when one lambda
calculus points to the other, the latter “inherits” all the functionality of the
former. For example, AP allows all kinds of dependencies which A\™ supports,
because A points to A\P.

Now to present a few lambda calculi in detail:

e A\ The simply-typed lambda calculus allows only one kind of depen-
dency, namely the dependency of terms on terms. This means that one
can define functions in A~ which take a term and return another term,
for example

t(a) = fa.

In fact, all lambda calculi on the A-cube support this dependency.

e )\2: The polymorphic or second-order lambda calculus inherits the depen-
dency of terms on terms from A~ and adds another dependency, namely
the dependency of terms on types. For example, one can define an identity
function constructor

t(A) =Xz : Ax

which, given a type A, returns the identity function for this particular
type A.

L«Terms” correspond to the “instances” in CTT.
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e )\w: This lambda calculus supports dependencies of types on types, allow-

ing functions like
T(A)=A— A,

which takes a type A and returns the type of functions from A to A.

e A\P: This lambda calculus supports dependencies of types on terms, al-
lowing functions like

7(0) = B,
T(n+1)=A — T(n).

This function T'(n) returns the type of functions which take n instances of
type A and return one instance of type B. Note that in this example, A
and B are fixed, because in AP it is not possible to define types depending
on types.

In the four lambda calculi presented, we showed that four kinds of dependencies
between types and terms exist:

e terms depending on terms,
e terms depending on types,
e types depending on types, and
e types depending on terms.

The least powerful lambda calculus on the A-cube is A, because it only supports
terms depending on terms, and the most powerful lambda calculus on the A-cube
is AC', which is Coquand and Huet’s Calculus of Constructions |7] and supports
all four kinds of dependencies between types and terms. CTT supports types
depending on terms and terms depending on terms, so it resides in AP.

5 Dependent list type

5.1 Ildea

In most programming languages, list types only depend on the type of elements
in the list. In a potential implementation, one may use such a list type in the
following way:

nil(A) € List(A),
cons(A)‘a‘nil(A) € List(A).

Here the empty list nil(A) only carries the type information that it is of type
List(A), which is the type of lists containing elements of type A. The non-empty
list cons(A)‘a‘nil(A) (containing only the element a € A) has exactly the same
type as nil(A). Such a list type may be implemented in a lambda calculus like
Aw, because our list type only depends on another type.
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However, we could think of a different list type which also includes the list
length in the type. One might use such a list type as follows:

nil(A) € List(A,0),
cons(A)‘0‘a‘nil(A) € List(A4,1).

This has the advantage that more information about lists is available at compile-
time, which can prevent errors early because the type checker can check if certain
operations are permitted. For example, we may demand that it should only be
possible to retrieve the head of a non-empty list, by specifying that the head
operation works on lists of non-zero length only. By encoding this in the type of
the head operation, the type checker checks for every head operation if its input
list has the correct type, which is only the case if it is non-empty, and throws
an error at compile-time otherwise.

5.2 Implementation

At the beginning of the implementation of our dependent list type, we specify
the type of our list type. Because our list type should depend on the type of
elements and on the list length, List is a function which takes a tuple containing
a type and an instance, and returns a type. Furthermore, we reason about this
function in the object-logic as follows: If A is a type and n € N, then List(A,n)
is a type as well.

axiomatization
List :: "[t,i]=t"
where

list_type: "[A type; n € N] = List(4,n) type"

Having defined our list type, we can specify the elements of our list type.
For this purpose, we define nil and cons. The nil function always represents an
empty list for a given type A. The cons function for a type A takes a natural
number n, an element of type A, and a List of elements of type A with length
n. Given that, cons returns a List with a length by one greater than the input
list length n. Note that giving the length of a list as a separate argument to
the cons function is necessary, because otherwise we cannot accept lists as input

arguments, due to the fact that one needs to give the list length in the list type.
2

axiomatization
nil :: "t = i" and
cons :: "t = i"
where

nil_type: "A type = nil(A) € List(4,0)" and
cons_type: "A type =—> cons(4) € (Il n € N. A — List(Ad,n) —
List(A,succ(n)))"

2There exist theorem provers like Matita [2] which allow automatic derivation of some ar-
guments from given types. Therefore such provers could make it obsolete to give the list
length as a separate argument the way we did, because it is already present in the type of
the list.
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Having defined nil and cons, we now approach head and tail, here abbreviated
as hd and tl. First we define the meta-logic type of hd and tl, then the object-
logic type. The meta-logic types of hd and tl are the same, namely the type
of functions which take a type and return an instance. On the other hand, the
object-logic types of hd and tl differ: While both nil(A) and cons(A) take a
natural number n and a list of type A with length succ(n), they return different
objects — hd returns an object of type A, and tl one of type List(A,n).

The results of application to hd and tl are determined by the rules hd appl
and tl _appl — these rules correspond to iota-reduction. There we see that only
the application of hd and tl to non-empty lists (constructed via cons) is defined.

axiomatization
hd :: "t=i" and
tl :: "t=1i"
where

hd_type: "A type —

hd(A) € (I n € N. List(4d,succ(n)) — A)" and
hd_appl: "A type —

hd(A) ¢ succ(n) ¢ (cons(A) ‘n *h “t) =h € A" and

tl_type: "A type —

t1(A) € (Il n € N. List(A,succ(n)) —> List(A,n))" and
tl_appl: "A type —

t1(4) ¢ succ(n) ¢ (cons(A) ‘n “h ¢ t) =t € List(4d,n)"

Now we define a list recursor function, which we call listrec. The output type
B of listrec depends on the length n of the input list and on the input list itself.
These dependencies can be used for example to construct a list with the same
length as the input list.

listrec takes several parameters: First, it takes the type A of elements in
the input list, and it takes a dependent type B, which gives the output type.
Then, similar to hd and tl, it takes a list length n and a list of type List(A,n).
Furthermore, listrec takes an element bn € B(0,nil(A)), which will be the output
for an input list of zero length. Also, listrec takes a parameter bc, which is a
function taking the head and the tail of a list and an element of the type B(n,[),
which is the result of the application of be respectively bn on the tail of the list,
and returning an element of type B(succ(n),cons(A)‘n‘h‘t).

This function is inspired by the axioms NE, NEL, NC0O and NC _succ from
the Isabelle CTT theory, which implement induction on natural numbers.
axiomatization

listrec :: "t=>(i=i=t)=1i"
where

listrec_type: "[A type; (Il n € N. 11 1 € List(4,n). B(n,1)) type] =

listrec(A,B) € Il n € N. Il 1 € List(A,n).
(Il bn € B(0,nil(4)).
II bc € (I nc € N. Il hc € A. Il tc € List(A,nc).

10

listrec_nappl:

B(nc,tc) — B(succ(nc),cons(A) ‘nc‘hc‘tc)). B(n,1))" and

"[A type; (I n € N. II 1 € List(4,n). B(n,1)) type] =
listrec(A,B) ¢ 0 ¢ nil(A) ¢ bn ¢ bc = bn € B(0,nil(A))"
and



listrec_cappl: "[A type; (Il n € N. II 1 € List(4,n). B(n,1)) type] =
listrec(A,B) ¢ succ(n) ¢ (cons(4) *n “h “t) ¢
bn ¢ bc =
bc ‘n ‘“h “t ¢ (listrec(4,B) ‘n “t ¢ bn ¢ bc) €
B(succ(n),cons(A) “n “h ¢ t)"

map is a function using listrec, taking an element of type List(A,n) and
returning a List(B, n), which it receives by applying a function of type A — B
to each element of the input list, and concatenating the results to the output
list.

definition
map :: "t=t=1i" where
"map(A,B) = An 1 f. listrec(d, Ax y. List(B,x)) ‘n ¢ 1 ¢ nil(B) *
(Mn htr. cons(B) “n ¢ (f “h) “r)"

We prove that map, when applied to a List(A,n), produces a List(B,n),
meaning it preserves the length of the input list. (See the appendix for the
proof.)

lemma "[n € N; A type; B type; 1 € List(A,n); f € A — B] =
map(A,B) ‘n ¢ 1 ¢ f € List(B,n)"

To test listrec, we define a length function using listrec, and prove that its
output really equals the length of the list. (Again, see the appendix for the
proof.)

definition
length :: "t=1" where
"length(4d) = An 1. listrec(A,Ax y. N) ‘n “1 0 ¢
(AMn h t r. succ(n))"

lemma "[n € N; A type; 1 € List(4d,n)] = length(4) ‘n ‘1 =n € N"

6 Conclusion

In the course of this seminar, we studied Constructive Type Theory (CTT) and
its implementation in Isabelle. We did so by developing a dependent list type
in CTT, thereby uncovering strengths and weaknesses of the logic.

Our dependent list type, encoding the list length in the type, works fine, but
it has one flaw: Because CTT does not allow dependencies of types on types
(which is present in A\Pw), we can’t directly encode the type dependency of
our list type in the object-logic (CTT), but we have to use Isabelle’s meta-logic
for that purpose. That is very unelegant and demands an implementation in a
stronger logic, such as the Calculus of Constructions, for which a dependent list
type (called vector) has already been implemented in Coq.

Apart from this, one of the greatest annoyances in proving properties of our
list type was S-reduction — finding a reliable way to automate this would dras-
tically shorten our proofs.

Learning Isabelle by starting with CTT turned out to be quite challenging, be-
cause most documentation and tutorials are concerned with HOL, which makes

11
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it hard to distinguish between the features Isabelle offers for all logics and those
which are relevant to HOL only.

In the future, to aid the development of dependent types which also rely
on types depending on types, it would be beneficial to establish more expres-
sive object-logics in Isabelle, like the Calculus of Constructions or Pure Type
Systems [3]. One might argue that establishing systems like the Calculus of
Constructions in Isabelle would not be very helpful, as there already exists a
dedicated theorem prover for this object-logic (Coq), but still, we might profit
from implementing such an object-logic in a logical framework, because we may
then use existing procedures of the logical framework and use results from one
object-logic in another one.

Another thing one could do is to define new dependent data types, for example
a dependent map type: This map type would save values of type B, which can
be indexed via values of type A. To ensure that accessing values of type A not
present in the map is detected as error, we could save a list of values of type A
in the type of the map. Whenever one wants to access the map then, he would
have to prove that the element he wants to access is contained in the values list.
For this list, one could use a dependent list type as ours. Such a map type could
be used as follows:

empty(A, B) € Map(A4, B, nil(A4)),
add(A, B)'n‘l‘a‘b'm € Map(A, B, cons(A)‘n‘a‘l).

An interesting use case of dependent types is group theory: One can represent
groups (G, e) as dependent types, with a type dependency on G and an instance
dependency on the operation e. Together with the group axioms, this allows
one to reason about groups in general. Other mathematical structures, such as
the type of n-dimensional vector spaces R™ can be expressed as dependent types
as well, enabling one to prove mathematical properties of them. Research could
also go into other dependent types, such as dependent pointers or functions with
n arguments.
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Appendix

Appendix

In the appendix, we give the full proofs concerning our list type.
Recall the definition of map:

definition
map :: "t=t=1i" where
"map(A,B) = An 1 f. listrec(Ad, Ax y. List(B,x)) ‘n ¢ 1 ¢ nil(B) ¢
(Mn htr. cons(B) “n ¢ (f “h) “r)"

We prove that map, when applied to a List(A,n), produces a List(B,n),
meaning it preserves the length of the input list.

lemma "[n € N; A type; B type; 1 € List(A,n); f € A — B] =
map(A,B) ‘n ¢ 1 ¢ f € List(B,n)"
apply (unfold map_def)
apply (rule ProdE)
defer
apply assumption
apply (rule ProdE)
defer
apply assumption
apply (rule ProdE)
defer
apply assumption
apply (rule ProdI)
apply (rule NF)
apply (rule ProdI)
apply (rule list_type)
apply assumption+
apply (rule ProdI)
apply (rule ProdF)
apply assumption+
apply (rule ProdE)+
apply (rule listrec_typel[of A "Ax y. List(B, x)"])
apply assumption
apply (tactic {* typechk_tac [] *})
apply (rule list_type)
apply (tactic {* typechk_tac [] *})
apply (rule list_type)
apply (tactic {* typechk_tac [] *})
apply (rule nil_type)
apply assumption
apply (rule list_type)
apply (tactic {* typechk_tac [] *})
apply (rule list_type)
apply (tactic {* typechk_tac [] *})
apply (rule cons_type)
apply assumption
done

At this point, we noticed that S-reduction with more than one application
(which we need at a later point) is not so trivial in CTT, therefore we made
a small proof demonstrating S-reduction. It uses transitivity, substitution and

14



reflexivity.

lemma "[A type; m € A; n € A] = (Mxy. x) ‘m ‘n=me¢c A"

apply (rule_tac b = "(A\y. m) ¢ n'" in trans_elem)

apply (rule_tac a = "(AMx y. x) ‘ m" and ¢ = "(A\y. m)" in subst_elemL)
apply (rule ProdC)

apply (tactic {* typechk_tac [] *})

apply (assumption)

apply (rule refl_elem)

apply (tactic {* typechk_tac [] *})

by (rule ProdC)

To test listrec, we define a length function using listrec, which is supposed to
return the length of a list.

definition
length :: "t=-1i" where
"length(A) = AMn 1. listrec(A,Ax y. N) ‘n ¢ 1 ¢0 ¢
(AMn h t r. succ(n))"

A small helper lemma helps us to determine the type of the application of
arguments to listrec.

lemma listrec_appl: "[A type; (Il n € N. II 1 € List(4,n). B(n,1)) type;
n € N; 1 € List(A,n);
bn € B(0,nil1(4));
bc € Il nc € N. II hc¢ € A. Il tc € List(4,nc).
Il rc € B(nc,tc). B(succ(nc),cons(4)‘nc‘hc‘tc)] =
listrec(A,B) ‘n ‘1 ¢ bn ¢ bc € B(n,1)"
apply (rule ProdE)+
apply (rule listrec_type)
by assumption

Below is the proof that the length function really yields the desired output:

lemma "[n € N; A type; 1 € List(A,n)] = length(4d) ‘n 1 =n € N"
apply (unfold length_def)
apply (rule_tac b = "(A\1. listrec(4, Ax y. N) ‘n ¢ 1 <0 ¢
(Mn h t r. succ(n))) ¢ 1" in trans_elem)
apply (rule_tac a = "(An 1. listrec(A, Ax y. N) *n ¢1 ¢0 ¢
(Mn h t r. succ(n))) ¢ n" and
c = "(A\1. listrec(A, Ax y. N) ‘n ¢1 ¢0 ¢
(AMn h t r. succ(n)))" in subst_elemL)
prefer 2
apply (rule refl_elem)
apply (tactic {* typechk_tac [] *})
apply (rule ProdC)
apply assumption
apply (tactic {* typechk_tac [] *})
apply (rule list_type)
apply (tactic {* typechk_tac [] *})
apply (rule listrec_type)
apply (tactic {* typechk_tac [] *})
apply (rule list_type)
apply (tactic {* typechk_tac [] *})
apply (rule list_type)
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16

apply

apply

(An
apply
apply
apply
apply
apply
apply
apply
apply
apply

apply
apply

(Mn
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply

(tactic {* typechk_tac [] *})

(rule_tac b = "listrec(4d, Ax y. N) ‘n ¢ 1 ¢0 ¢
h t r. succ(n))" in trans_elem)
(rule ProdC)

assumption

(tactic {* typechk_tac [] *})
(rule listrec_type)

(tactic {* typechk_tac [] *})
(rule list_type)

(tactic {* typechk_tac [] *})
(rule list_type)

(tactic {* typechk_tac [] *})

(rule EqE)

(rule_tac B = "An 1. Eq(N, listrec(4d, Ax y. N) ‘n ¢1 ¢0 ¢
h t r. succ(n)), n)" in listrec_appl)
assumption

(rule ProdF)

(rule NF)

(rule ProdF)

(rule list_type)

assumption+

(rule EgF)

(rule NF)

(rule listrec_appl)

(tactic {* typechk_tac [] *})
(rule list_type)

assumption+

(rule list_type)

assumption+

(rule EqI)

(rule listrec_nappl)

(tactic {* typechk_tac [] *})
(rule list_type)

assumption+

(rule ProdI)

(rule NF)

(rule ProdI)

assumption

(rule ProdI)

(rule list_type)

assumption+

(rule ProdI)

(rule EgF)

(rule NF)

(rule listrec_appl)

(tactic {* typechk_tac [] *})
(rule list_type)

assumption+

(rule list_type)

assumption+

(rule EqI)



¢ ¢

apply (rule_tac b = "(AMn h t r. succ(n)) ¢ nc ¢ hc ¢ tc
(listrec(A,Ax y. N) “nc “tc 0 ¢ (AMn h t r. succ(n)))" in trans_elem)

apply (rule listrec_cappl)

apply (tactic {* typechk_tac [] *})

apply (rule list_type)

apply assumption+

apply (rule_tac b = "(A\h t r. succ(nc)) ¢ hc ¢ tc ¢
(listrec(A, Ax y. N) “ nc ¢ tc ¢ 0 ¢ (AMn h t r. succ(n)))" in trans_elem)

apply (rule_tac a = "(AMn h t r. succ(n)) ¢ nc" and
¢ = "(A\h t r. succ(nc))" in subst_elemL)

apply (rule ProdC)

apply (tactic {* typechk_tac [] *})

apply assumption

apply (rule_tac n = "nc" in list_type)

apply assumption

apply assumption

apply (rule NF)

apply (rule refl_elem)

apply (tactic {* typechk_tac [] *})

apply (rule listrec_type)

apply (tactic {* typechk_tac [] *})

apply (rule list_type)

apply assumption+

apply (rule list_type)

apply assumption+

apply (rule_tac b = "(AA\t r. succ(nc)) ¢ tc ¢
(listrec(A, Ax y. N) ¢ nc ¢ tc ¢ 0 ¢
(Mn h t r. succ(n)))" in trans_elem)
apply (rule_tac a = "(A\h t r. succ(nc)) ¢ hc" and
¢ = "(A\t r. succ(nc))" in subst_elemL)
apply (rule ProdC)
apply assumption
apply (rule_tac A = "List(A,nc)" in ProdI)
apply (rule list_type)
apply assumption+
apply (rule_tac A = "N" in ProdI)
apply (tactic {* typechk_tac [] *})
apply (rule refl_elem)
apply (tactic {* typechk_tac [] *})
apply (rule listrec_type)
apply (tactic {* typechk_tac [] *})
apply (rule list_type)
apply assumption+
apply (rule list_type)
apply assumption+

apply (rule_tac b = "(AAr. succ(anc)) ¢
(listrec(A, Ax y. N) ¢ nc ¢ tc ¢ 0 ¢

(AMn h t r. succ(n)))" in trans_elem)
apply (rule_tac a = "(A\t r. succ(nc)) ¢ tc" and
¢ = "(Ar. succ(nc))" in subst_elemL)
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apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply

apply
apply
apply
apply
apply
apply
apply
apply

done

18

(rule ProdC)

assumption

(rule_tac A = "N" in ProdI)
(tactic {* typechk_tac [] *})
(rule refl_elem)

(tactic {* typechk_tac [] *})
(rule listrec_type)

(tactic {* typechk_tac [] *})
(rule list_type)

assumption+

(rule list_type)

assumption+

(rule ProdC)

(rule ProdE)+

(rule listrec_type)

(tactic {* typechk_tac [] *})
(rule list_type)

assumption+

(rule list_type)

assumption+
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